若將方程|
(x-4)2+y2
-
(x+4)2+y2
|=6化簡(jiǎn)為
x2
a2
-
y2
b2
=1
的形式,則a2-b2=
2
2
分析:方程|
(x-4)2+y2
-
(x+4)2+y2
|=6,表示點(diǎn)(x,y)到(4,0),(-4,0)兩點(diǎn)距離差的絕對(duì)值為6,由此可得雙曲線的方程,從而可得結(jié)論.
解答:解:方程|
(x-4)2+y2
-
(x+4)2+y2
|=6,表示點(diǎn)(x,y)到(4,0),(-4,0)兩點(diǎn)距離差的絕對(duì)值為6,
∴軌跡為以(4,0),(-4,0)為焦點(diǎn)的雙曲線,方程為
x2
9
-
y2
7
=1

∴a2-b2=2
故答案為:2
點(diǎn)評(píng):本題考查雙曲線的定義與方程,考查學(xué)生分析解決問(wèn)題的能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出以下四個(gè)結(jié)論:
(1)函數(shù)f(x)=
x-1
x+1
的對(duì)稱中心是(-1,-1);
(2)若關(guān)于x的方程x-
1
x
+k=0
在x∈(0,1)沒(méi)有實(shí)數(shù)根,則k的取值范圍是k≥2
(3)已知點(diǎn)P(a,b)與點(diǎn)Q(1,0)在直線2x-3y+1=0兩側(cè),則3b-2a>1;
(4)若將函數(shù)f(x)=sin(2x-
π
3
)
的圖象向右平移?(?>0)個(gè)單位后變?yōu)榕己瘮?shù),則?的最小值是
π
12
其中正確的結(jié)論是:
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義在區(qū)間[-π,
2
]
上的函數(shù)y=f(x)圖象關(guān)于直線x=
π
4
對(duì)稱,當(dāng)x≥
π
4
時(shí),f(x)=-sinx.
(1)作出y=f(x)的圖象;(2)求y=f(x)的解析式;
(3)若關(guān)于x的方程f(x)=a有解,將方程中的a取一確定的值所得的所有的解的和記為Ma,求Ma的所有可能的值及相應(yīng)的a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

選做題在A、B、C、D四小題中只能選做2題,每小題10分,共計(jì)20分.
請(qǐng)?jiān)诖鹁砑堉付▍^(qū)域內(nèi)作答.解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟.
A.選修4-1:幾何證明選講如圖,AD是∠BAC的平分線,⊙O過(guò)點(diǎn)A且與BC邊相切于點(diǎn)D,與AB,AC分別交于E,F(xiàn),求證:EF∥BC.
B.選修4-2:矩陣與變換
已知a,b∈R,若矩陣M=[
-1
b
a
3
]所對(duì)應(yīng)的變換把直線l:2x-y=3變換為自身,求a,b的值.
C.選修4-4:坐標(biāo)系與參數(shù)方程將參數(shù)方程
x=2(t+
1
t
)
y=4(t-
1
t
)
t為參數(shù))化為普通方程.
D.選修4-5:已知a,b是正數(shù),求證(a+
1
b
)(2b+
1
2a
)≥92.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

若將方程|
(x-4)2+y2
-
(x+4)2+y2
|=6化簡(jiǎn)為
x2
a2
-
y2
b2
=1
的形式,則a2-b2=______.

查看答案和解析>>

同步練習(xí)冊(cè)答案