1.若直線$\frac{x}{a}$+$\frac{y}$=1通過點(diǎn)P(cosθ,sinθ),則下列不等式正確的是( 。
A.a2+b2≤1B.a2+b2≥1C.$\frac{1}{{a}^{2}}$+$\frac{1}{^{2}}$≤1D.$\frac{1}{{a}^{2}}$+$\frac{1}{^{2}}$≥1

分析 先把點(diǎn)代入得到bcosθ+asinθ=ab,即可得到$\sqrt{{a}^{2}+^{2}}$(sinθ+φ)=ab,得到$\sqrt{{a}^{2}+^{2}}$≤ab,問題得以判斷

解答 解:直線$\frac{x}{a}$+$\frac{y}$=1通過點(diǎn)P(cosθ,sinθ),
∴bcosθ+asinθ=ab,
∴$\sqrt{{a}^{2}+^{2}}$sin(θ+φ)=ab,其中tanφ=$\frac{a}$,
∴$\sqrt{{a}^{2}+^{2}}$≥ab,
∴a2+b2≥a2b2,
∴$\frac{1}{{a}^{2}}$+$\frac{1}{^{2}}$≥1,
故選:D

點(diǎn)評(píng) 本題考查了直線和點(diǎn)的位置關(guān)系以及三角函數(shù)的問題,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.-2log510-log50.25+2=( 。
A.0B.-1C.-2D.-4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.等差數(shù)列{an}前n項(xiàng)和為Sn,${S_p}=\frac{p}{q}$,${S_q}=\frac{q}{p}$(p≠q),則Sp+q的值是( 。
A.大于4B.小于4C.等于4D.不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.若“a>b”,則“a3>b3”是真命題(填:真、假)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.若雙曲線的一條漸近線為x+2y=0,且雙曲線與拋物線y=x2的準(zhǔn)線僅有一個(gè)公共點(diǎn),則此雙曲線的標(biāo)準(zhǔn)方程為$\frac{{y}^{2}}{\frac{1}{16}}-\frac{{x}^{2}}{\frac{1}{4}}=1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.設(shè)θ是兩個(gè)非零向量$\overrightarrow{a}$、$\overrightarrow$的夾角,若對(duì)任意實(shí)數(shù)t,|$\overrightarrow{a}$+t$\overrightarrow$|的最小值為1,則下列判斷正確的是( 。
A.若|$\overrightarrow{a}$|確定,則θ唯一確定B.若|$\overrightarrow$|確定,則θ唯一確定
C.若θ確定,則|$\overrightarrow$|唯一確定D.若θ確定,則|$\overrightarrow{a}$|唯一確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.如圖,在△ABC中,若AB=AC=3,cos∠BAC=$\frac{1}{2}$,$\overrightarrow{DC}$=2$\overrightarrow{BD}$,則$\overrightarrow{AD}•\overrightarrow{BC}$=$-\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.如圖,ABCD是邊長(zhǎng)為3的正方形,DE⊥平面ABCD,AF∥DE,DE=3AF=3$\sqrt{6}$.
(1)(文理)求證:AC⊥平面BDE;
(2)(理)求二面角F-BE-D的余弦值;
(文)求三棱錐F-BDE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.曲線$\left\{\begin{array}{l}x=5cosθ\\ y=4sinθ\end{array}$(θ為參數(shù))的焦點(diǎn)到雙曲線x2-$\frac{y^2}{2}$=1的漸近線的距離為( 。
A.$\sqrt{3}$B.$\sqrt{6}$C.$2\sqrt{2}$D.$\sqrt{10}$

查看答案和解析>>

同步練習(xí)冊(cè)答案