(1)證明an<,n=3,4,5,…,
(2)猜測(cè)數(shù)列{an}是否有極限?如果有,寫(xiě)出極限的值(不必證明);
(3)試確定一個(gè)正整數(shù)N,使得當(dāng)n>N時(shí),對(duì)任意b>0,都有an<.
(1)證法1:∵當(dāng)n≥2時(shí),0<an≤,
∴≥=+,
即-≥.
于是有-≥,-≥,…,-≥.?
所有不等式兩邊相加可得?
-≥++…+.?
由已知不等式知,當(dāng)n≥3時(shí)有,->[log2n].
∵a1=b,∴>+[log2n]=.
∴an<,n=3,4,5….
證法2:設(shè)f(n)=++…+,首先利用數(shù)學(xué)歸納法證不等式an≤,n=3,4,5,….
①當(dāng)n=3時(shí),
由a3≤=≤=,知不等式成立.
②假設(shè)當(dāng)n=k(k≥3)時(shí),不等式成立,即ak≤,
則ak+1≤=
≤
=
=
=,
即當(dāng)n=k+1時(shí),不等式也成立.
由①②知,an≤,n=3,4,5,…
又由已知不等式得?
an<,n=3,4,5,…
(2)解:有極限,且an=0.
(3)解:∵,
令<,?
則有l(wèi)og2n≥[log2n]>10n>210=1 024.
故取N=1 024,可使當(dāng)n>N時(shí),都有an<.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com