【題目】在四棱柱中,底面,底面為菱形,為與交點,已知,.
(I)求證:平面.
(II)在線段上是否存在一點,使得平面,如果存在,求的值,如果不存在,請說明理由.
(III)設(shè)點在內(nèi)(含邊界),且,求所有滿足條件的點構(gòu)成的圖形,并求的最小值.
【答案】(1)見解析(2)(3)構(gòu)成的圖形是線段,包括端點,
【解析】試題分析:(1)由線面垂直得,由菱形性質(zhì)得,再根據(jù)線面垂直判定定理得平面,(2)連接交于點,當(dāng)是中點,由平幾知識可得是平行四邊形,即得,再由線面平行判定定理得結(jié)論(3)由線面垂直性質(zhì)與判定定理可得,即得點構(gòu)成的圖形是線段,再利用三角形面積求O到直線距離,即得的最小值.
試題解析:(I)證明:∵底面,
∴底面,
又平面,
∴,
∵為菱形,
∴,
而,
∴平面.
(II)存在點,當(dāng)是中點,即時,平面.
證明:連接,交于點,連接,則是中點,
∵,且,分別是,的中點,
∴是平行四邊形,
∴,
又平面,平面,
∴平面,
∴當(dāng)點與點重合時,平面,
此時,.
(III)在內(nèi),滿足的點構(gòu)成的圖形是線段,包括端點,
連接,則,
∵,
∴要使,只需,從而需,
又在中,,
又為中點,
∴,
故點一定在線段上,
當(dāng)時,取最小值.
在直角三角形中,,,,
所以
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)直線與拋物線相交于不同兩點、,與圓相切于點,且為線段中點.
(1) 若是正三角形(是坐標(biāo)原點),求此三角形的邊長;
(2) 若,求直線的方程;
(3) 試對進行討論,請你寫出符合條件的直線的條數(shù)(直接寫出結(jié)論).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=4cos2x﹣4 sinxcosx的最小正周期為π(>0).
(1)求的值;
(2)若f(x)的定義域為[﹣ , ],求f(x)的最大值與最小值及相應(yīng)的x的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(Ⅰ)若,求在區(qū)間[-1,2]上的取值范圍;
(Ⅱ)若對任意, 恒成立,記,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有甲、乙兩個班級進行數(shù)學(xué)考試,按照大于等于85分為優(yōu)秀,85分以下為非優(yōu)秀統(tǒng)計成績后,得到如下的列聯(lián)表.
已知從全部105人中隨機抽取1人為優(yōu)秀的概率為.
(1)請完成上面的列聯(lián)表:若按的可靠性要求,根據(jù)列聯(lián)表的數(shù)據(jù),能否認(rèn)為“成績與班級有關(guān)系”;
(2)若按下面的方法從甲班優(yōu)秀的學(xué)生中抽取一人:把甲班優(yōu)秀的10名學(xué)生從2到11進行編號,先后兩次拋擲一枚均勻的骰子,出現(xiàn)的點數(shù)之和為被抽取人的序號.試求抽到10號的概率.
附:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】命題p:關(guān)于x的不等式的解集為;命題q:函數(shù)為增函數(shù).命題r:a滿足.
(1)若p∨q是真命題且p∧q是假題.求實數(shù)a的取值范圍.
(2)試判斷命題¬p是命題r成立的一個什么條件.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)且
(1)討論的單調(diào)區(qū)間;
(2)若直線的圖象恒在函數(shù)圖象的上方,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個均勻的正方體玩具,各個面上分別寫有1,2,3,4,5,6,將這個玩具先后拋擲2次,求:
(1)朝上的一面數(shù)相等的概率;
(2)朝上的一面數(shù)之和小于5的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若要得到函數(shù)y=sin(2x﹣ )的圖象,可以把函數(shù)y=sin2x的圖象( )
A.向右平移 個單位
B.向左平移 個單位
C.向右平移 個單位
D.向左平移 個單位
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com