若函數(shù)y=
x-b
x+2
在(a,b+4)(b>-2)上的值域?yàn)?span id="3uq73ct" class="MathJye">(-3,
1
2
),則ab=
1
1
分析:y=
x-b
x+2
的圖象,知函數(shù)y=
x-b
x+2
(b>-2)在(a,b+4)(b>-2)上是增函數(shù),結(jié)合y=
x-b
x+2
的圖象,利用使值域?yàn)?span id="cadwegy" class="MathJye">(-3,
1
2
)時(shí),建立關(guān)于a,b的方程,求出a,b的值即可.
解答:解:∵函數(shù)y=
x-b
x+2
在(a,b+4)(b>-2)上的值域?yàn)?span id="3dw8egd" class="MathJye">(-3,
1
2
),
y=
x-b
x+2
的圖象,知函數(shù)y=
x-b
x+2
在(a,b+4)(b>-2)上是增函數(shù)時(shí),有a>-2,
a-b
a+2
=-3
b+4-b
b+4+2
=
1
2
a=-1
b=2

則ab=1.
故答案為:1.
點(diǎn)評(píng):本題考查通過(guò)分式函數(shù)的圖象求定義域、值域間的關(guān)系,考查數(shù)形結(jié)合的思想,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)y=
x-bx+2
在(a,b+4)(b<-2)上的值域?yàn)椋?,+∞),則ab=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)h(x)=ax2+bx+c(其中c<3),其導(dǎo)函數(shù)y=h′(x)的圖象如圖,f(x)=6lnx+h(x)
(1)求函數(shù)f(x)在x=3處的切線斜率;
(2)若函數(shù)y=-x,x∈(0,6]的圖象總在函數(shù)y=f(x)圖象的上方,求c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)y=
x-bx+2
在(a,b+4)(b<-2)上的值域?yàn)椋?,+∞),則a+b=
-6
-6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)y=x2+bx+c(x∈(-∞,1))不是單調(diào)函數(shù),則實(shí)數(shù)b的取值范圍( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案