復(fù)數(shù)z滿足(z-2)(1+i)=1-i,其中i是虛數(shù)單位,則復(fù)數(shù)z=
2-i
2-i
分析:復(fù)數(shù)方程兩邊同乘1-i,利用多項式乘法展開,化簡為a+bi的形式即可.
解答:解:因為復(fù)數(shù)z滿足(z-2)(1+i)=1-i,
所以(z-2)(1+i)(1-i)=(1-i)(1-i),
所以(z-2)×2=-2i.
∴z-2=-i,
∴z=2-i.
故答案為:2-i.
點(diǎn)評:本題考查復(fù)數(shù)方程的求法,復(fù)數(shù)的代數(shù)形式的混合運(yùn)算,考查計算能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

12、已知復(fù)數(shù)z滿足|z|2-2|z|-3=0的復(fù)數(shù)z的對應(yīng)點(diǎn)的軌跡是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若復(fù)數(shù)z滿足|z|=|z+2+2i|,則|z-1+i|的最小值是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知:復(fù)數(shù)z滿足(z-2)i=a+i(a∈R).
(1)求復(fù)數(shù)z;
(2)a為何值時,復(fù)數(shù)z2對應(yīng)的點(diǎn)在第一象限.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•蘭州模擬)已知復(fù)數(shù)z滿足(z-2)(1+i)=1-i(i為虛數(shù)單位),則z=(  )

查看答案和解析>>

同步練習(xí)冊答案