【題目】假設(shè)每天從甲地去乙地的旅客人數(shù)X是服從正態(tài)分布N(800,502)的隨機(jī)變量.記一天中從甲地去乙地的旅客人數(shù)不超過900的概率為p0 .
(1)求p0的值;
(參考數(shù)據(jù):若X~N(μ,σ2),有P(μ﹣σ<X≤μ+σ)=0.6826,P(μ﹣2σ<X≤μ+2σ)=0.9544,P(μ﹣3σ<X≤μ+3σ)=0.9974.)
(2)某客運(yùn)公司用A,B兩種型號(hào)的車輛承擔(dān)甲、乙兩地間的長途客運(yùn)業(yè)務(wù),每車每天往返一次,A,B兩種車輛的載客量分別為36人和60人,從甲地去乙地的營運(yùn)成本分別為1600元/輛和2400元/輛.公司擬組建一個(gè)不超過21輛車的客運(yùn)車隊(duì),并要求B型車不多于A型車7輛.若每天要以不小于p0的概率運(yùn)完從甲地去乙地的旅客,且使公司從甲地去乙地的營運(yùn)成本最小,那么應(yīng)配備A型車、B型車各多少輛?
【答案】
(1)解:由于隨機(jī)變量X服從正態(tài)分布N(800,502),故有μ=800,σ=50,P(700<X≤900)=0.9544.
由正態(tài)分布的對(duì)稱性,可得p0=(P(X≤900)=P(X≤800)+P(800<X≤900)=
(2)解:設(shè)A型、B型車輛的數(shù)量分別為x,y輛,則相應(yīng)的營運(yùn)成本為1600x+2400y.
依題意,x,y還需滿足:x+y≤21,y≤x+7,P(X≤36x+60y)≥p0.
由(1)知,p0=P(X≤900),故P(X≤36x+60y)≥p0等價(jià)于36x+60y≥900.
于是問題等價(jià)于求滿足約束條件
且使目標(biāo)函數(shù)z=1600x+2400y達(dá)到最小值的x,y.
作可行域如圖所示,可行域的三個(gè)頂點(diǎn)坐標(biāo)分別為P(5,12),Q(7,14),R(15,6).
由圖可知,當(dāng)直線z=1600x+2400y經(jīng)過可行域的點(diǎn)P時(shí),直線z=1600x+2400y在y軸上截距 最小,即z取得最小值.
故應(yīng)配備A型車5輛,B型車12輛.
【解析】(1)變量服從正態(tài)分布N(800,502),即服從均值為800,標(biāo)準(zhǔn)差為50的正態(tài)分布,適合700<X≤900范圍內(nèi)取值即在(μ﹣2σ,μ+2σ)內(nèi)取值,其概率為:95.44%,從而由正態(tài)分布的對(duì)稱性得出不超過900的概率為p0 . (2)設(shè)每天應(yīng)派出A型x輛、B型車y輛,根據(jù)條件列出不等式組,即得線性約束條件,列出目標(biāo)函數(shù),畫出可行域求解.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓經(jīng)過,,三點(diǎn).
(1)求圓的標(biāo)準(zhǔn)方程;
(2)若過點(diǎn)N 的直線被圓截得的弦AB的長為,求直線的傾斜角.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知a>0,函數(shù) .
(1)記f(x)在區(qū)間[0,4]上的最大值為g(a),求g(a)的表達(dá)式;
(2)是否存在a使函數(shù)y=f(x)在區(qū)間(0,4)內(nèi)的圖象上存在兩點(diǎn),在該兩點(diǎn)處的切線互相垂直?若存在,求出a的取值范圍;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,角A,B,C對(duì)應(yīng)的邊分別是a,b,c,已知cos2A﹣3cos(B+C)=1.
(1)求角A的大。
(2)若△ABC的面積S=5 ,b=5,求sinBsinC的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某餐廳通過查閱了最近5次食品交易會(huì)參會(huì)人數(shù) (萬人)與餐廳所用原材料數(shù)量 (袋),得到如下統(tǒng)計(jì)表:
第一次 | 第二次 | 第三次 | 第四次 | 第五次 | |
參會(huì)人數(shù) (萬人) | 13 | 9 | 8 | 10 | 12 |
原材料 (袋) | 32 | 23 | 18 | 24 | 28 |
(1)根據(jù)所給5組數(shù)據(jù),求出關(guān)于的線性回歸方程.
(2)已知購買原材料的費(fèi)用 (元)與數(shù)量 (袋)的關(guān)系為,
投入使用的每袋原材料相應(yīng)的銷售收入為700元,多余的原材料只能無償返還,據(jù)悉本次交易大會(huì)大約有15萬人參加,根據(jù)(1)中求出的線性回歸方程,預(yù)測(cè)餐廳應(yīng)購買多少袋原材料,才能獲得最大利潤,最大利潤是多少?(注:利潤銷售收入原材料費(fèi)用).
參考公式: , .
參考數(shù)據(jù): , , .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)二次函數(shù)f(x)=ax2+bx.
(1)若1≤f(-1)≤2,2≤f(1)≤4,求f(-2)的取值范圍;
(2)當(dāng)b=1時(shí),若對(duì)任意x∈[0,1],-1≤f(x)≤1恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè),函數(shù)在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減.
(Ⅰ)若,求的值;
(Ⅱ)求函數(shù)在區(qū)間上的最小值(用表示).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某個(gè)產(chǎn)品有若千零部件構(gòu)成,加工時(shí)需要經(jīng)過6道工序,分別記為.其中,有些工序因?yàn)槭侵圃觳煌牧悴考,所以可以在幾臺(tái)機(jī)器上同時(shí)加工;有些工序因?yàn)槭菍?duì)同一個(gè)零部件進(jìn)行處理,所以存在加工順序關(guān)系.若加工工序必須要在工序完成后才能開工,則稱為的緊前工序.現(xiàn)將各工序的加工次序及所需時(shí)間(單位:小時(shí))列表如下:
工序 | ||||||
加工時(shí)間 | 3 | 4 | 2 | 2 | 2 | 1 |
緊前工序 | 無 | 無 |
現(xiàn)有兩臺(tái)性能相同的生產(chǎn)機(jī)器同時(shí)加工該產(chǎn)品,則完成該產(chǎn)品的最短加工時(shí)間是__________小時(shí).(假定每道工序只能安排在一臺(tái)機(jī)器上,且不能間斷).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對(duì)某種書籍的成本費(fèi)(元)與印刷冊(cè)數(shù)(千冊(cè))的數(shù)據(jù)作了初步處理,得到下面的散點(diǎn)圖及一些統(tǒng)計(jì)量的值.
表中.
為了預(yù)測(cè)印刷20千冊(cè)時(shí)每冊(cè)的成本費(fèi),建立了兩個(gè)回歸模型:.
(1)根據(jù)散點(diǎn)圖,擬認(rèn)為選擇哪個(gè)模型預(yù)測(cè)更可靠?(只選出模型即可)
(2)根據(jù)所給數(shù)據(jù)和(1)中的模型選擇,求關(guān)于的回歸方程,并預(yù)測(cè)印刷20千冊(cè)時(shí)每冊(cè)的成本費(fèi).
附:對(duì)于一組數(shù)據(jù),其回歸方程中斜率和截距的最小二乘估計(jì)公式分別為:,.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com