.給出下列命題:

①命題“若b2-4ac<0,則方程ax2bxc=0(a≠0)無實根”的否命題;

②命題在“△ABC中,ABBCCA,那么△ABC為等邊三角形”的逆命題;

③命題“若a>b>0,則>>0”的逆否命題;

④若“m>1,則mx2-2(m+1)x+(m-3)>0的解集為R”的逆命題.

其中真命題的序號為________.

解析 ①否命題:若b2-4ac≥0,則方程ax2bxc=0(a≠0)有實根,真命題;

②逆命題:若△ABC為等邊三角形,則ABBCCA,真命題;

③因為命題“若a>b>0,則>>0”是真命題,故其逆否命題真;

,得m∈∅

④逆命題:若mx2-2(m+1)x+(m-3)>0的解集為R,則m>1,假命題,

m∈∅.

所以應填①②③.

答案 ①②③

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

給出下列命題:①函數(shù)y=cos|x|是周期函數(shù).
②函數(shù)y=x2的值域是{y|0≤y≤4},則它的定義域是{x|-2≤x≤2}.
③命題:“x,y是實數(shù),若x≠y,則x2≠y2”的逆命題為真.
④在△ABC中,a=5,b=8,c=7,則
BC
CA
=20

其中正確結論的序號是
 
(填寫你認為正確的所有結論序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
(3a-1)x-2  x<1
logax         x≥1
,現(xiàn)給出下列命題:
①函數(shù)f(x)的圖象可以是一條連續(xù)不斷的曲線;
②能找到一個非零實數(shù)a,使得函數(shù)f (x)在R上是增函數(shù);
③a>1時函數(shù)y=f (|x|) 有最小值-2.
其中正確的命題的個數(shù)是(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給出下列命題:
(1)若
a
b
,
b
c
,則
a
c
;
(2)有向線段就是向量,向量就是有向線段;
(3)零向量的方向是任意的,零向量與任何一向量都共線;
(4)
a
2
=|
a
|2

其中正確的命題個數(shù)( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•江西模擬)已知實數(shù)a≠0,給出下列命題:
①函數(shù)f(x)=asin(2x+
π
3
)
的圖象關于直線x=
π
3
對稱;
②函數(shù)f(x)=asin(2x+
π
3
)
的圖象可由g(x)=asin2x的圖象向左平移
π
6
個單位而得到;
③把函數(shù)h(x)=asin(x+
π
3
)
的圖象上的所有點的縱坐標保持不變,橫坐標縮短到原來的
1
2
倍,可以得到函數(shù)f(x)=asin(2x+
π
3
)的圖象;
④若函數(shù)f(x)=asin(2x+
π
3
+?)(x∈
R)為偶函數(shù),則?=kπ+
π
6
(k∈Z)

其中正確命題的序號有
②③④
②③④
;(把你認為正確的命題的序號都填上).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給出下列命題:①函數(shù)y=f(x)的圖象與函數(shù)y=f(x-2)+3的圖象一定不會重合;②函數(shù)y=log
1
2
(-x2+2x+3)
的單調(diào)區(qū)間為(1,+∞);③雙曲線的漸近線方程是y=±
3
4
x
,則該雙曲線的離心率是
5
4
,其中正確命題的個數(shù)是
 

查看答案和解析>>

同步練習冊答案