【題目】如圖是某機(jī)械零件的幾何結(jié)構(gòu),該幾何體是由兩個(gè)相同的直四棱柱組合而成的,且前后、左右、上下均對稱,每個(gè)四棱柱的底面都是邊長為2的正方形,高為4,且兩個(gè)四棱柱的側(cè)棱互相垂直.則這個(gè)幾何體有________個(gè)面,其體積為________.
【答案】20
【解析】
由圖形可直接得到幾何體面的個(gè)數(shù),幾何體體積等于兩個(gè)四棱柱的體積和減去兩個(gè)四棱柱交叉部分的體積,根據(jù)直觀圖分別進(jìn)行求解即可.
由圖形觀察可知,幾何體的面共有個(gè),
該幾何體的直觀圖如圖所示,
該幾何體的體積為兩個(gè)四棱柱的體積和減去兩個(gè)四棱柱交叉部分的體積.
兩個(gè)四棱柱的體積和為.
交叉部分的體積為四棱錐的體積的2倍.
在等腰中,邊上的高為2,則
由該幾何體前后,左右上下均對稱,知四邊形為邊長為的菱形.
設(shè)的中點(diǎn)為,連接易證即為四棱錐的高,
在中,
又
所以
因?yàn)?/span>,
所以,
所以求體積為
故答案為:20;
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)求 函數(shù)的單調(diào)區(qū)間;
(2)定義:對于函數(shù),若存在,使成立,則稱為函數(shù)的不動(dòng)點(diǎn). 如果函數(shù)存在兩個(gè)不同的不動(dòng)點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】統(tǒng)計(jì)與人類活動(dòng)息息相關(guān),我國從古代就形成了一套關(guān)于統(tǒng)計(jì)和整理數(shù)據(jù)的方法.據(jù)宋元時(shí)代學(xué)者馬端臨所著的《文獻(xiàn)通考》記載,宋神宗熙寧年間(公元1068-1077年),天下諸州商稅歲額:四十萬貫以上者三,二十萬貫以上者五,十萬貫以上者十九……五千貫以下者七十三,共計(jì)三百十一.由這段內(nèi)容我們可以得到如下的統(tǒng)計(jì)表格:
分組(萬貫) | 合計(jì) | ||||||||
合計(jì) | 73 | 35 | 95 | 51 | 30 | 19 | 5 | 3 | 311 |
則宋神宗熙寧年間各州商稅歲額(單位:萬貫)的中位數(shù)大約為( )
A.0.5B.2C.5D.10
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某省即將實(shí)行新高考,不再實(shí)行文理分科.某校為了研究數(shù)學(xué)成績優(yōu)秀是否對選擇物理有影響,對該校2018級的1000名學(xué)生進(jìn)行調(diào)查,收集到相關(guān)數(shù)據(jù)如下:
(1)根據(jù)以上提供的信息,完成列聯(lián)表,并完善等高條形圖;
選物理 | 不選物理 | 總計(jì) | |
數(shù)學(xué)成績優(yōu)秀 | |||
數(shù)學(xué)成績不優(yōu)秀 | 260 | ||
總計(jì) | 600 | 1000 |
(2)能否在犯錯(cuò)誤的概率不超過0.05的前提下認(rèn)為數(shù)學(xué)成績優(yōu)秀與選物理有關(guān)?
附:
臨界值表:
0.10 | 0.05 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),以下關(guān)于的結(jié)論其中正確的結(jié)論是( )
①當(dāng)時(shí),在上無零點(diǎn);
②當(dāng)時(shí),在上單調(diào)遞增;
③當(dāng)時(shí),在上有無數(shù)個(gè)極值點(diǎn);
④當(dāng)時(shí),在上恒成立.
A.①④B.②③C.①②④D.②③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知?jiǎng)又本與橢圓交于、兩個(gè)不同點(diǎn),且的面積,其中為坐標(biāo)原點(diǎn).
(1)證明和均為定值;
(2)設(shè)線段的中點(diǎn)為,求的最大值;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】橢圓規(guī)是用來畫橢圓的一種器械,它的構(gòu)造如圖所示,在一個(gè)十字形的金屬板上有兩條互相垂直的導(dǎo)槽,在直尺上有兩個(gè)固定的滑塊A,B,它們可分別在縱槽和橫槽中滑動(dòng),在直尺上的點(diǎn)M處用套管裝上鉛筆,使直尺轉(zhuǎn)動(dòng)一周,則點(diǎn)M的軌跡C是一個(gè)橢圓,其中|MA|=2,|MB|=1,如圖,以兩條導(dǎo)槽的交點(diǎn)為原點(diǎn)O,橫槽所在直線為x軸,建立直角坐標(biāo)系.
(1)將以射線Bx為始邊,射線BM為終邊的角xBM記為φ(0≤φ<2π),用表示點(diǎn)M的坐標(biāo),并求出C的普通方程;
(2)已知過C的左焦點(diǎn)F,且傾斜角為α(0≤α)的直線l1與C交于D,E兩點(diǎn),過點(diǎn)F且垂直于l1的直線l2與C交于G,H兩點(diǎn).當(dāng),|GH|,依次成等差數(shù)列時(shí),求直線l2的普通方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從條件①,②,③,中任選一個(gè),補(bǔ)充到下面問題中,并給出解答.
已知數(shù)列的前項(xiàng)和為,,________.若,,成等比數(shù)列,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD是邊長為2的菱形,∠DAB=60°,AD⊥PD,點(diǎn)F為棱PD的中點(diǎn).
(1)在棱BC上是否存在一點(diǎn)E,使得CF∥平面PAE,并說明理由;
(2)若AC⊥PB,二面角D﹣FC﹣B的余弦值為時(shí),求直線AF與平面BCF所成的角的正弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com