如圖,已知在直四棱柱ABCD-A1B1C1D1中,AD⊥DC,AB∥DC,DC=DD1=2AD=2AB=2.
(1)求證:DB⊥平面B1BCC1;
(2)設E是DC上一點,試確定E的位置,使得D1E∥平面A1BD,并說明理由.

【答案】分析:(1)由AB∥DC,AD⊥DC,知AB⊥AD,在Rt△ABD中,AB=AD=1,所以BD=,BC=,由此能證明BD⊥平面B1BCC1
(2)DC的中點即為E點.由DE∥AB,DE=AB,知四邊形ABED是平行四邊形.故AD∥BE.由此能夠證明D1E∥平面A1BD.
解答:(1)證明:∵AB∥DC,AD⊥DC,
∴AB⊥AD,在Rt△ABD中,AB=AD=1,
∴BD=,
易求BC=
又∵CD=2,∴BD⊥BC.
又BD⊥BB1,B1B∩BC=B,

∴BD⊥平面B1BCC1
(2)DC的中點即為E點.
∵DE∥AB,DE=AB,
∴四邊形ABED是平行四邊形.
∴AD∥BE.
又AD∥A1D1,∴BE∥A1D1,
∴四邊形A1D1EB是平行四邊形.∴D1E∥A1B.
∵D1E?平面A1BD,
∴D1E∥平面A1BD.
點評:本題考查直線垂直于平面的證明,考查平面與平面平行的應用.綜合性強,具有一定的探索性,對數(shù)學思想能力要求較高.解題時要認真審題,注意等價轉化思想的合理運用.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

如圖,已知在直四棱柱ABCD-A1B1C1D1中,AD⊥DC,AB∥DC,DC=DD1=2AD=2AB=2.
(1)求證:DB⊥平面B1BCC1;
(2)設E是DC上一點,試確定E的位置,使得D1E∥平面A1BD,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(09年湖南十二校理)(12分)

   如圖,已知在直四棱柱中,,

,

   (I)求證:平面

(II)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:2014屆河南安陽一中高二第二次階段考試理科數(shù)學試卷(解析版) 題型:解答題

(12分)如圖,已知在直四棱柱中,

,

(1)求證:平面;

(2)設上一點,試確定的位置,使平面,并說明理由.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年廣西省高三第二次月考理科數(shù)學試卷 題型:解答題

如圖,已知在直四棱柱中,,,

(I)求證:平面;

(II)求二面角的余弦值.

 

 

 

查看答案和解析>>

科目:高中數(shù)學 來源:2011年江西省撫州市教研室高二上學期期末數(shù)學理卷(A) 題型:解答題

((本小題滿分12分)

如圖,已知在直四棱柱中,

,,

   (1)求證:平面

(2)求二面角的余弦值.

 

查看答案和解析>>

同步練習冊答案