已知橢C:
x2
a2
+
y2
b2
=1
(a>b>0),以橢圓短軸的一個頂點B與兩個焦點F1,F(xiàn)2為頂點的三角形周長是4+2
3
,且∠BF1F2=
π
6

(1)求橢圓C的標準方程;
(2)若過點Q(1,
1
2
)引曲線C的弦AB恰好被點Q平分,求弦AB所在的直線方程.
(1)∵以橢圓短軸的一個頂點B與兩個焦點F1,F(xiàn)2為頂點的三角形周長是4+2
3
,且∠BF1F2=
π
6

∴2a+2c=4+2
3
,
3
2
a=c

∴a=2,c=
3

b=
a2-c2
=1

∴橢圓方程為
x2
4
+y2=1

(2)當直線l的斜率不存在時,過點Q(1,
1
2
)引曲線C的弦AB不被點Q平分;
當直線l的斜率為k時,l:y-
1
2
=k(x-1)與橢圓方程聯(lián)立,消元可得(1+4k2)x2-4k(2k-1)x+(1-2k)2-4=0
∵過點Q(1,
1
2
)引曲線C的弦AB恰好被點Q平分,
4k(2k-1)
1+4k2
=2
,
∴解得k=-
1
2

1
4
+
1
4
<1

∴點Q在橢圓內(nèi)
∴直線l:y-
1
2
=-
1
2
(x-1),即l:y=-
1
2
x+1.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢C:
x2
a2
+
y2
b2
=1(a>b>0)的焦點為F1,F(xiàn)2,P是橢圓上任意一點,若以坐標原點為圓心,橢圓短軸長為直徑的圓經(jīng)過橢圓的焦點,且△PF1F2的周長為4+2
2

(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)直線的l是圓O:x2+y2=
4
3
上動點P(x0,y0)(x0-y0≠0)處的切線,l與橢圓C交于不同的兩點Q,R,證明:∠QOR的大小為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢C:
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
1
2
,橢圓的短軸端點與雙曲線
y2
2
-x2
=1的焦點重合,過P(4,0)且不垂直于x軸直線l與橢圓C相交于A、B兩點.
(Ⅰ)求橢C的方程;
(Ⅱ)求
OA
OB
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•崇明縣二模)已知橢C:
x2
a2
+
y2
b2
=1
(a>b>0),以橢圓短軸的一個頂點B與兩個焦點F1,F(xiàn)2為頂點的三角形周長是4+2
3
,且∠BF1F2=
π
6

(1)求橢圓C的標準方程;
(2)若過點Q(1,
1
2
)引曲線C的弦AB恰好被點Q平分,求弦AB所在的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢C:
x2
a2
+
y2
b2
=1(a>b>0)的焦點為F1,F(xiàn)2,P是橢圓上任意一點,若以坐標原點為圓心,橢圓短軸長為直徑的圓經(jīng)過橢圓的焦點,且△PF1F2的周長為4+2
2

(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)直線的l是圓O:x2+y2=
4
3
上動點P(x0,y0)(x0-y0≠0)處的切線,l與橢圓C交于不同的兩點Q,R,證明:∠QOR的大小為定值.

查看答案和解析>>

同步練習(xí)冊答案