(本小題滿分12分)
已知函數(shù)f(x)=ex+ax-1(e為自然對數(shù)的底數(shù)).
(Ⅰ)當(dāng)a=1時,求過點(1,f(1))處的切線與坐標(biāo)軸圍成的三角形的面積;
(II)若f(x)x2在(0,1 )上恒成立,求實數(shù)a的取值范圍.

(Ⅰ);(II)

解析試題分析:(Ⅰ)利用導(dǎo)數(shù)先求過點(1,f(1))處的切線的方程,再求切線與坐標(biāo)軸的交點坐標(biāo),易得三角型面積;(II)由,令,利用導(dǎo)數(shù)求函數(shù)上的單調(diào)性,便可得結(jié)論.
試題解析:(Ⅰ)當(dāng)時,,,,
函數(shù)在點處的切線方程為,即,        2分
設(shè)切線與x、y軸的交點分別為A,B.
,令,∴,,
在點處的切線與坐標(biāo)軸圍成的圖形的面積為.        4分
(Ⅱ)由
,
,        6分
,∵,∴,為減函數(shù),
  ,       8分
又∵為增函數(shù),      10分
,因此只需.              12分
考點:1、利用導(dǎo)數(shù)求切線方程;2、利用導(dǎo)數(shù)求函數(shù)的單調(diào)性;3、導(dǎo)數(shù)運算與函數(shù)的綜合運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(1)當(dāng)a=1時,求曲線在點(3,)處的切線方程
(2)求函數(shù)的單調(diào)遞增區(qū)間

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,某自來水公司要在公路兩側(cè)排水管,公路為東西方向,在路北側(cè)沿直線排,在路南側(cè)沿直線排,現(xiàn)要在矩形區(qū)域內(nèi)沿直線將接通.已知,公路兩側(cè)排管費用為每米1萬元,穿過公路的部分的排管費用為每米2萬元,設(shè)所成的小于的角為

(Ⅰ)求矩形區(qū)域內(nèi)的排管費用關(guān)于的函數(shù)關(guān)系式;
(Ⅱ)求排管的最小費用及相應(yīng)的角

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)=x-ax+(a-1),.
(1)討論函數(shù)的單調(diào)性;(2)若,設(shè),
(。┣笞Cg(x)為單調(diào)遞增函數(shù);
(ⅱ)求證對任意x,x,xx,有.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(Ⅰ)若在(0,)單調(diào)遞減,求a的最小值
(Ⅱ)若有兩個極值點,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分13分)已知函數(shù)
(Ⅰ)當(dāng)時,求函數(shù)的單調(diào)增區(qū)間;
(Ⅱ)求函數(shù)在區(qū)間上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù).
(Ⅰ)求的單調(diào)區(qū)間;
(Ⅱ)若,且在區(qū)間內(nèi)存在極值,求整數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)的導(dǎo)函數(shù)是,處取得極值,且.
(Ⅰ)求的極大值和極小值;
(Ⅱ)記在閉區(qū)間上的最大值為,若對任意的總有成立,求的取值范圍;
(Ⅲ)設(shè)是曲線上的任意一點.當(dāng)時,求直線OM斜率的最小值,據(jù)此判斷的大小關(guān)系,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)處取得極值.
(1)求、的值;(2)求的單調(diào)區(qū)間.

查看答案和解析>>

同步練習(xí)冊答案