中,角所對(duì)的邊分別為,已知,
(Ⅰ)求的大;
(Ⅱ)若,求的取值范圍.

(Ⅰ);(Ⅱ)

解析試題分析:(Ⅰ)經(jīng)審題由已知條件啟發(fā),根據(jù)正弦定理,得經(jīng)過整理計(jì)算得,考慮到是三角形的內(nèi)角,其范圍為,從而可求出的值;( Ⅱ)由構(gòu)成三角形的兩邊之和大于第三邊的條件可得,即,由(Ⅰ)知及條件,可以考慮利用余弦定理,再由基本不等式對(duì)進(jìn)行放大,從而求出的最大值,最后求出的取值范圍.
試題解析:(Ⅰ)由條件結(jié)合正弦定理得,
從而,
,∴.        5分
(Ⅱ)解法一:由已知:,        6分
由余弦定理得:(當(dāng)且僅當(dāng)時(shí)等號(hào)成立)
,又,.
從而的取值范圍是.        12分
考點(diǎn):1.正弦定理;2.余弦定理;3.基本不等式.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知向量,,
(1)求函數(shù)的最小正周期;
(2)在中,角A,B,C的對(duì)邊分別為a,b,c,且滿足,若,求角的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在△ABC中,設(shè)角A,B,C的對(duì)邊分別為a,b,c,且
(1)求角A的大。
(2)若,,求邊c的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

釣魚島及其附屬島嶼是中國(guó)固有領(lǐng)土,如圖:點(diǎn)A、B、C分別表示釣魚島、南小島、黃尾嶼,點(diǎn)C在點(diǎn)A的北偏東47°方向,點(diǎn)B在點(diǎn)C的南偏西36°方向,點(diǎn)B在點(diǎn)A的南偏東79°方向,且A、B兩點(diǎn)的距離約為3海里.

(1)求A、C兩點(diǎn)間的距離;(精確到0.01)
(2)某一時(shí)刻,我國(guó)一漁船在A點(diǎn)處因故障拋錨發(fā)出求救信號(hào).一艘R國(guó)艦艇正從點(diǎn)C正東10海里的點(diǎn)P處以18海里/小時(shí)的速度接近漁船,其航線為PCA(直線行進(jìn)),而我東海某漁政船正位于點(diǎn)A南偏西60°方向20海里的點(diǎn)Q處,收到信號(hào)后趕往救助,其航線為先向正北航行8海里至點(diǎn)M處,再折向點(diǎn)A直線航行,航速為22海里/小時(shí).漁政船能否先于R國(guó)艦艇趕到進(jìn)行救助?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,海上有兩個(gè)小島相距10,船O將保持觀望A島和B島所成的視角為,現(xiàn)從船O上派下一只小艇沿方向駛至處進(jìn)行作業(yè),且.設(shè)

(1)用分別表示,并求出的取值范圍;
(2)晚上小艇在處發(fā)出一道強(qiáng)烈的光線照射A島,B島至光線的距離為,求BD的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,甲船以每小時(shí)海里的速度向正北方航行,乙船按固定方向勻速直線航行,當(dāng)甲船位于處時(shí),乙船位于甲船的北偏西方向的處,此時(shí)兩船相距海里,當(dāng)甲船航行分鐘到達(dá)處時(shí),乙船航行到甲船的北偏西方向的處,此時(shí)兩船相距海里,問乙船每小時(shí)航行多少海里?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

中,分別為內(nèi)角A,B,C所對(duì)的邊長(zhǎng),.
(1)求角B的大小。
(2)若的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在銳角內(nèi)角、所對(duì)的邊分別為、.已知.
求:(1)外接圓半徑;
(2)當(dāng)時(shí),求的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

的外接圓半徑,角的對(duì)邊分別是,且 .
(1)求角和邊長(zhǎng);
(2)求的最大值及取得最大值時(shí)的的值,并判斷此時(shí)三角形的形狀.

查看答案和解析>>

同步練習(xí)冊(cè)答案