【題目】在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,且滿足ccosB=(2a+b)cos(π﹣C).
(1)求角C的大。
(2)若c=4,△ABC的面積為 ,求a+b的值.

【答案】
(1)

解:∵ccosB=(2a+b)cos(π﹣C).

∴sinCcosB=(﹣2sinA﹣sinB)cosC,

∴sin(B+C)=﹣2sinAcosC,

∴cosC=﹣ ,

∴C=


(2)

解:∵SABC= absinC= ,

∴ab=4,

∴由余弦定理可得:c2=a2+b2+ab=(a+b)2﹣ab=16.

∴解得:a+B=2


【解析】(1)利用正弦定理,三角函數(shù)恒等變換的應(yīng)用化簡(jiǎn)可得cosC=﹣ ,由特殊角的三角函數(shù)值即可得解.(2)利用三角形面積公式可求ab=4,由余弦定理即可解得a+B的值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列的前n項(xiàng)和Snn2n .

(1)求數(shù)列的通項(xiàng)公式an;

(2)令 ,求數(shù)列{bn}的前n項(xiàng)和為Tn .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公交公司分別推出支付寶和微信掃碼支付乘車(chē)活動(dòng),活動(dòng)設(shè)置了一段時(shí)間的推廣期,由于推廣期內(nèi)優(yōu)惠力度較大,吸引越來(lái)越多的人開(kāi)始使用掃碼支付.某線路公交車(chē)隊(duì)統(tǒng)計(jì)了活動(dòng)剛推出一周內(nèi)每一天使用掃碼支付的人次,用x表示活動(dòng)推出的天數(shù),y表示每天使用掃碼支付的人次(單位:十人次),統(tǒng)計(jì)數(shù)據(jù)如表所示:

x

1

2

3

4

5

6

7

y

6

11

21

34

66

101

196

根據(jù)以上數(shù)據(jù),繪制了散點(diǎn)圖.

(1)根據(jù)散點(diǎn)圖判斷,在推廣期內(nèi),,均為大于零的常數(shù))哪一個(gè)適宜作為掃碼支付的人次關(guān)于活動(dòng)推出天數(shù)的回歸方程類(lèi)型?(給出判斷即可,不必說(shuō)明理由);

(2)y關(guān)于x的回歸方程不是線性的可通過(guò)換元方法把它化歸為線性回歸方程。例如:a、b為常數(shù),e為自然對(duì)數(shù)的底數(shù)),可以?xún)蛇呁瑫r(shí)取自然對(duì)數(shù),再令,先用最小二乘法求出x的線性回歸方程,再得出yx的回歸方程。根據(jù)(1)的判斷結(jié)果及表1中的數(shù)據(jù),求y關(guān)于x的回歸方程;

(3)由(2)中的歸方程預(yù)測(cè)活動(dòng)推出第12天使用掃碼支付的人次。

參考數(shù)據(jù):

66

1.54

2711

50.12

3.47

其中,參考公式:對(duì)于一組數(shù)據(jù),,…,,其回歸直線的斜率和截距的最小二乘估計(jì)公式分別為 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的左、右焦點(diǎn)為,直線過(guò)點(diǎn)且垂直于橢圓的長(zhǎng)軸,動(dòng)直線垂直于點(diǎn),線段的垂直平分線與的交點(diǎn)的軌跡為曲線,若,且是曲線上不同的點(diǎn),滿足,則的取值范圍為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率為, 傾斜角為的直線經(jīng)過(guò)橢圓的右焦點(diǎn)且與圓相切.

(1)求橢圓 的方程;

(2)若直線與圓相切于點(diǎn), 且交橢圓兩點(diǎn),射線于橢圓交于點(diǎn),設(shè)的面積與的面積分別為.

①求的最大值; ②當(dāng)取得最大值時(shí),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知三棱柱A1B1C1﹣ABC中,側(cè)棱與底面垂直,AB=BC=AA1 , ∠ABC=90°,M是BC的中點(diǎn).

(1)求證:A1B∥平面AMC1;
(2)求平面A1B1M與平面AMC1所成角的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐 底面,底面為正方形 , 分別是的中點(diǎn).

(Ⅰ)求證: ;

(Ⅱ)求與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正三棱柱ABC A 1B1C1的側(cè)棱長(zhǎng)和底面邊長(zhǎng)均為2,DBC 的中點(diǎn).

(1) 求證:AD⊥平面B1BC C1;

(2) 求證:A 1B//平面ADC1;

(3) 求三棱錐C1 ADB1的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,AD∥BC,AB⊥AD,E是AB的中點(diǎn),AB=AD=PA=PB=2,BC=1,PC=

(1)求證:CF∥平面PAB;
(2)求證:PE⊥平面ABCD;
(3)求二面角B﹣PA﹣C的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案