【題目】在給出的下列命題中,正確的是( )
A.設(shè)是同一平面上的四個(gè)點(diǎn),若,則點(diǎn)必共線
B.若向量是平面上的兩個(gè)向量,則平面上的任一向量都可以表示為,且表示方法是唯一的
C.已知平面向量滿足則為等腰三角形
D.已知平面向量滿足,且,則是等邊三角形
【答案】ACD
【解析】
對(duì)于A,根據(jù)共線定理判斷A、B、C三點(diǎn)共線即可;對(duì)于B,根據(jù)平面向量的基本定理,判斷命題錯(cuò)誤;對(duì)于C,根據(jù)向量的運(yùn)算性質(zhì)可得OA為BC的垂線且OA在的角平分線上,從而可判斷C;對(duì)于D,根據(jù)平面向量的線性表示與數(shù)量積運(yùn)算得出命題正確;
對(duì)于A,,
∴,∴,且有公共點(diǎn)C,
∴則點(diǎn)A、B、C共線,命題A正確;
對(duì)于B,根據(jù)平面向量的基本定理缺少條件不共線,故B錯(cuò)誤;
對(duì)于C,由于,即,,
得,即OA為BC的垂線,
又由于,可得OA在的角平分線上,
綜合得為等腰三角形,故C正確;
對(duì)于D,平面向量、、滿足,且,
∴,∴,
即,∴,
∴、的夾角為,同理、的夾角也為,
∴是等邊三角形,故D正確;
故選ACD.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù), .
(1)當(dāng)時(shí),求的單調(diào)區(qū)間;
(2)當(dāng)時(shí),若對(duì)任意,都有成立,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】人的眼皮有單眼皮與雙眼皮之分,這是由對(duì)應(yīng)的基因決定的.生物學(xué)上已經(jīng)證明:決定眼皮單雙的基因有兩種,一種是顯性基因(記為),另一種是隱性基因(記為);基因總是成對(duì)出現(xiàn)(如、、、),而成對(duì)的基因中,只要出現(xiàn)了顯性基因,那么這個(gè)人就一定是雙眼皮(也就是說(shuō),“單眼皮”的充要條件是“成對(duì)的基因是”);如果不發(fā)生基因突變的話,成對(duì)的基因中,一個(gè)來(lái)自父親,另一個(gè)來(lái)自母親,但父母親提供基因時(shí)都是隨機(jī)的.有一對(duì)夫妻,兩人成對(duì)的基因都是,不考慮基因突變,求他們的孩子是單眼皮的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,設(shè)橢圓:的左、右焦點(diǎn)分別為,,上頂點(diǎn)為,過(guò)點(diǎn)作與垂直的直線交軸負(fù)半軸于點(diǎn),且.
(1)若過(guò),,三點(diǎn)的圓恰好與直線:相切,求橢圓的方程;
(2)在(1)的條件下,過(guò)右焦點(diǎn)作斜率為的直線與橢圓交于,兩點(diǎn),在軸上是否存在點(diǎn)使得以,為鄰邊的平行四邊形是菱形?如果存在,求出的取值范圍;如果不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,動(dòng)物園要圍成相同面積的長(zhǎng)方形虎籠四間,一面可利用原有的墻,其它各面用鋼筋網(wǎng)圍成.
(1)現(xiàn)有可圍長(zhǎng)網(wǎng)的材料,每間虎籠的長(zhǎng)、寬各設(shè)計(jì)為多少時(shí),可使每間虎籠面積最大?
(2)若使每間虎籠面積為,則每間虎籠的長(zhǎng)、寬各設(shè)計(jì)為多少時(shí),可使圍成四間虎籠的鋼筋網(wǎng)總長(zhǎng)最?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某超市計(jì)劃銷(xiāo)售某種食品,現(xiàn)邀甲、乙兩個(gè)商家進(jìn)場(chǎng)試銷(xiāo)5天.兩個(gè)商家提供的返利方案如下:甲商家每天固定返利60元,且每賣(mài)出一件食品商家再返利2元;乙商家無(wú)固定返利,賣(mài)出30件以內(nèi)(含30件)的食品,每件食品商家返利4元,超出30件的部分每件返利6元.經(jīng)統(tǒng)計(jì),兩個(gè)商家的試銷(xiāo)情況莖葉圖如下:
甲 | 乙 | |||||||
9 | 8 | 9 | 2 | 8 | 8 | |||
2 | 2 | 3 | 2 | 1 | 1 |
(1)現(xiàn)從甲商家試銷(xiāo)的5天中抽取兩天,求這兩天的銷(xiāo)售量都小于30的概率;
(2)超市擬在甲、乙兩個(gè)商家中選擇一家長(zhǎng)期銷(xiāo)售,如果僅從日平均返利額的角度考慮,請(qǐng)利用所學(xué)的統(tǒng)計(jì)學(xué)知識(shí)為超市作出選擇,并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線C的頂點(diǎn)為O(0,0),焦點(diǎn)F(0,1)
(Ⅰ)求拋物線C的方程;
(Ⅱ)過(guò)F作直線交拋物線于A、B兩點(diǎn).若直線OA、OB分別交直線l:y=x﹣2于M、N兩點(diǎn),求|MN|的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】袋中有紅、白球各一個(gè),每次任取一個(gè),有放回地摸三次,求基本事件的個(gè)數(shù)n,寫(xiě)出所有基本事件的全集I,并計(jì)算下列事件的概率:
(1)三次顏色恰有兩次同色;
(2)三次顏色全相同;
(3)三次摸到的紅球多于白球.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一張坐標(biāo)紙上一已作出圓及點(diǎn),折疊此紙片,使與圓周上某點(diǎn)重合,每次折疊都會(huì)留下折痕,設(shè)折痕與直線的交點(diǎn)為,令點(diǎn)的軌跡為.
(1)求軌跡的方程;
(2)若直線與軌跡交于兩個(gè)不同的點(diǎn),且直線與以為直徑的圓相切,若,求的面積的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com