15.如圖,A,B,C,D都在同一個(gè)與水平面垂直的平面內(nèi),B,D為兩島上的兩座燈塔的塔頂.測(cè)量船于水面A處測(cè)得B點(diǎn)和D點(diǎn)的仰角分別為75°,30°,于水面C處測(cè)得B點(diǎn)和D點(diǎn)的仰角均為60°,AC=1km.試探究圖中B,D間距離與另外哪兩點(diǎn)間距離相等,然后求B,D間的距離.(計(jì)算結(jié)果精確到0.1km)參考數(shù)據(jù):$\sqrt{2}≈1.41$,$\sqrt{6}$≈2.45.

分析 在△ACD中,∠DAC=30°推斷出CD=AC,同時(shí)根據(jù)CB是△CAD底邊AD的中垂線,判斷出BD=BA,進(jìn)而在△ABC中利用余弦定理求得AB答案可得.

解答 解:在△ACD中,∠DAC=30°,
∠ADC=60°-∠DAC=30°,
所以CD=AC=0.1.
又∠BCD=180-60°-60°=60°,
故CB是△CAD底邊AD的中垂線,
所以BD=BA、
在△ABC中,AB=$\frac{ACsin60°}{sin15°}$=$\frac{3\sqrt{2}+\sqrt{6}}{20}$,
因此,BD=$\frac{3\sqrt{2}+\sqrt{6}}{20}$≈0.3km.
故B、D的距離約為0.3km.

點(diǎn)評(píng) 本題主要考查了解三角形的實(shí)際應(yīng)用.考查學(xué)生分析問題解決問題的能力.綜合運(yùn)用基礎(chǔ)知識(shí)的能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知點(diǎn)P(x,y)滿足x2+y2<2,則滿足到直線x-y+2$\sqrt{2}$=0的距離d∈[1,3]的點(diǎn)P概率為( 。
A.$\frac{1}{2}+\frac{π}{2}$B.$\frac{1}{2}-\frac{π}{2}$C.$\frac{1}{4}-\frac{1}{2π}$D.$\frac{1}{4}+\frac{1}{2π}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.集合{x∈N|x≤3}還可以表示為(  )
A.{0,1,2,3}B.{2,1,3}C.{1,2,3,4}D.{x|0≤x≤3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.設(shè)集合M={x|x>1},P={x|x2-6x+9=0},則下列關(guān)系中正確的是( 。
A.M=PB.P?MC.M?PD.M∪P=R

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知等比數(shù)列{an}的前n項(xiàng)和為Sn,且${a_3}=\frac{3}{2}$,${S_3}=\frac{9}{2}$.
(1)若a3,m,S3成等比數(shù)列,求m值;      
(2)求a1的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知向量$\overrightarrow a=(1,2),\overrightarrow b=(1,0),\overrightarrow c=(3,-4)$,若λ為實(shí)數(shù)且$(\overrightarrow a+λ\overrightarrow b)$∥$\overrightarrow c$,則λ=$-\frac{5}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知f(x)是定義在R上周期為2的奇函數(shù),當(dāng)x∈(0,1)時(shí),f(x)=4x-1,則f(log4$\frac{1}{32}$)( 。
A.1B.-1C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.方程(a-1)x2+(2-a)y2=(a-1)(2-a)中,當(dāng)1<a<2時(shí),它表示(  )
A.橢圓或圓B.雙曲線C.橢圓D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=(sinx+cosx)2+2cos2x
(1)求f(x)的單調(diào)遞減區(qū)間   
(2)求f(x)在$x∈[0,\frac{π}{2}]$時(shí)的值域
(3)敘述由$y=\sqrt{2}sinx$到y(tǒng)=f(x)的圖象的變換過程.

查看答案和解析>>

同步練習(xí)冊(cè)答案