如圖,梯形ABCD的底邊AB在y軸上,原點(diǎn)O為AB的中點(diǎn),M為CD的中點(diǎn).
(1)求點(diǎn)M的軌跡方程;
(2)過M作AB的垂線,垂足為N,若存在正常數(shù),使,且P點(diǎn)到A、B 的距離和為定值,求點(diǎn)P的軌跡E的方程;
(3)過的直線與軌跡E交于P、Q兩點(diǎn),求面積的最大值.
(1)(2)(3)
解析試題分析:(1)求動點(diǎn)軌跡方程的步驟,一是設(shè)動點(diǎn)坐標(biāo)M(x, y),二是列出動點(diǎn)滿足的條件,三是化簡,,四是去雜,x≠0;(2)涉及兩個(gè)動點(diǎn)問題,往往是通過相關(guān)點(diǎn)法求對應(yīng)軌跡方程,設(shè)P(x, y),則,代入M的軌跡方程有,利用橢圓定義解出相關(guān)點(diǎn)法也叫轉(zhuǎn)移法,即將未知轉(zhuǎn)移到已知,用未知點(diǎn)坐標(biāo)表示已知點(diǎn)坐標(biāo),是一種化歸思想,(3)直線與橢圓位置關(guān)系,一般先分析其幾何性,再用代數(shù)進(jìn)行刻畫.本題中的三角形可分解為兩個(gè)同底三角形,底長都為,所以三角形面積最大值決定于高,即橫坐標(biāo)差的絕對值,這可結(jié)合韋達(dá)定理進(jìn)行列式分析
試題解析:解:(1)設(shè)點(diǎn)M的坐標(biāo)為M(x, y)(x≠0),則
又由AC⊥BD有,即,
∴x2+y2=1(x≠0). (4分)
(2)設(shè)P(x, y),則,代入M的軌跡方程有
即,∴P的軌跡為橢圓(除去長軸的兩個(gè)端點(diǎn)).
要P到A、B的距離之和為定值,則以A、B為焦點(diǎn),故.
∴ 從而所求P的軌跡方程為. 9分
(3)易知l的斜率存在,設(shè)方程為聯(lián)立9x2+y2=1,有
設(shè)P(x1,y1),Q(x2,y2),則
令,則且
,
所以當(dāng),即也即時(shí),面積取最大值,最大值為. 12分
考點(diǎn):直接法求軌跡方程,相關(guān)點(diǎn)法求軌跡方程,直線與橢圓位置關(guān)系
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓:的離心率,原點(diǎn)到過點(diǎn),的直線的距離是.
(1)求橢圓的方程;
(2)若橢圓上一動點(diǎn)關(guān)于直線的對稱點(diǎn)為,求 的取值范圍;
(3)如果直線交橢圓于不同的兩點(diǎn),,且,都在以為圓心的圓上,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓、拋物線的焦點(diǎn)均在軸上,的中心和的頂點(diǎn)均為原點(diǎn),從每條曲線上取兩個(gè)點(diǎn),將其坐標(biāo)記錄如下:、、、.
(1)經(jīng)判斷點(diǎn),在拋物線上,試求出的標(biāo)準(zhǔn)方程;
(2)求拋物線的焦點(diǎn)的坐標(biāo)并求出橢圓的離心率;
(3)過的焦點(diǎn)直線與橢圓交不同兩點(diǎn)且滿足,試求出直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知命題:方程表示焦點(diǎn)在y軸上的橢圓;
命題:雙曲線的離心率,若或為真命題,且為假命題,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(13分)已知圓O:x2+y2=3的半徑等于橢圓E:=1(a>b>0)的短半軸長,橢圓E的右焦點(diǎn)F在圓O內(nèi),且到直線l:y=x-的距離為-,點(diǎn)M是直線l與圓O的公共點(diǎn),設(shè)直線l交橢圓E于不同的兩點(diǎn)A(x1,y1),B(x2,y2).
(1)求橢圓E的方程;
(2)求證:|AF|-|BF|=|BM|-|AM|.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓短軸的一個(gè)端點(diǎn)為,離心率為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)直線交橢圓于、兩點(diǎn),若.求
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的焦點(diǎn)坐標(biāo)為F1(-1,0),F2(1,0),過F2垂直于長軸的直線交橢圓于P,Q兩點(diǎn),且|PQ|=3.
(1)求橢圓的方程;
(2)過F2的直線l與橢圓交于不同的兩點(diǎn)M,N,則△F1MN的內(nèi)切圓的面積是否存在最大值?若存在,求出這個(gè)最大值及此時(shí)的直線方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓C1:+y2=1,橢圓C2以C1的長軸為短軸,且與C1有相同的離心率.
(1)求橢圓C2的方程;
(2)設(shè)O為坐標(biāo)原點(diǎn),點(diǎn)A,B分別在橢圓C1和C2上,=2,求直線AB的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓C:=1(a>b>0)的離心率與等軸雙曲線的離心率互為倒數(shù)關(guān)系,直線l:x-y+=0與以原點(diǎn)為圓心, 以橢圓C的短半軸長為半徑的圓相切.
(1)求橢圓C的方程;
(2)設(shè)M是橢圓的上頂點(diǎn),過點(diǎn)M分別作直線MA,MB交橢圓于A,B兩點(diǎn),設(shè)兩直線的斜率分別為k1,k2,且k1+k2=4,證明:直線AB過定點(diǎn).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com