已知正項(xiàng)數(shù)列的前項(xiàng)和為,的等比中項(xiàng).
(Ⅰ)若,且,求數(shù)列的通項(xiàng)公式;
(Ⅱ)在(Ⅰ)的條件下,若,求數(shù)列的前項(xiàng)和.

(Ⅰ);(Ⅱ)

解析試題分析:(Ⅰ)已知正項(xiàng)數(shù)列的前項(xiàng)和為,的等比中項(xiàng),若,且,求數(shù)列的通項(xiàng)公式,此題關(guān)鍵是求,要求利用的等比中項(xiàng),得,當(dāng)時(shí),,求得,從而得,再由,得,這樣得數(shù)列是以2為公比的等比數(shù)列,從而得數(shù)列的通項(xiàng)公式;(Ⅱ)若,求數(shù)列的前項(xiàng)和,首先求數(shù)列的通項(xiàng)公式,由,只需求出數(shù)列的通項(xiàng)公式,由前面可知,可利用來(lái)求,求得,得,這是一個(gè)等比數(shù)列與一個(gè)等差數(shù)列對(duì)應(yīng)項(xiàng)積所組成的數(shù)列,求它的和可用錯(cuò)為相減法來(lái)求.
試題解析:(Ⅰ),即 ,當(dāng)時(shí),,∴,當(dāng)時(shí),,∴,即 ,
  ∴ ,∴數(shù)列是等差數(shù)列,由,∴數(shù)列是以2為公比的等比數(shù)列,∴ ,∴
(Ⅱ) ,   ∴  ①,
兩邊同乘以 ②,
①-②得
 
考點(diǎn):求數(shù)列的通項(xiàng)公式,數(shù)列求和.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)數(shù)列的前n項(xiàng)和為為等比數(shù)列,且
.
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè),求數(shù)列的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列的前項(xiàng)和為,且滿(mǎn)足
(1)求,的值;
(2)求
(3)設(shè),數(shù)列的前項(xiàng)和為,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列的前項(xiàng)和為,.
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)設(shè),求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列的前項(xiàng)和,函數(shù)對(duì),數(shù)列滿(mǎn)足.
(1)分別求數(shù)列、的通項(xiàng)公式;
(2)若數(shù)列滿(mǎn)足是數(shù)列的前項(xiàng)和,若存在正實(shí)數(shù),使不等式對(duì)于一切的恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

正項(xiàng)數(shù)列滿(mǎn)足:.
(1)求數(shù)列的通項(xiàng)公式
(2)令,求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列的前項(xiàng)和為,且
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)已知數(shù)列的通項(xiàng)公式,記,求數(shù)列的前項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列的前項(xiàng)和
(1)求數(shù)列的通項(xiàng)公式;      (2)求的最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在數(shù)列中,.
(1)設(shè),求證數(shù)列是等比數(shù)列;
(2)求數(shù)列的通項(xiàng)公式.

查看答案和解析>>

同步練習(xí)冊(cè)答案