【題目】某高中政教處為了調(diào)查學生對“一帶一路”的關注情況,在全校組織了“一帶一路知多少”的知識問卷測試,并從中隨機抽取了12份問卷,得到其測試成績(百分制)的莖葉圖如下:.
(1)寫出該樣本的中位數(shù),若該校共有3000名學生,試估計該校測試成績在70分以上的人數(shù);
(2)從所抽取的70分以上的學生中再隨機選取4人,記表示測試成績在80分以上的人數(shù),求的分布列和數(shù)學期望
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)f(x)=x2+aln(x+1). (Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)F(x)=f(x)+ln 有兩個極值點x1 , x2且x1<x2 , 求證F(x2)> .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,O為等腰三角形ABC內(nèi)一點,⊙O與△ABC的底邊BC交于M,N兩點,與底邊上的高AD交于點G,且與AB,AC分別相切于E,F(xiàn)兩點.
(1)證明:EF∥BC;
(2)若AG等于⊙O的半徑,且AE=MN=2 ,求四邊形EBCF的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某興趣小組欲研究晝夜溫差大小與患感冒人數(shù)多少之間的關系,他們分別到氣象局與某醫(yī)院抄錄了1至6月份每月10號的晝夜溫差情況與因患感冒而就診的人數(shù), 得到如下資料:
日期 | 1月10日 | 2月10日 | 3月10日 | 4月10日 | 5月10日 | 6月10日 |
晝夜溫差 | 10 | 11 | 13 | 12 | 8 | 6 |
就診人數(shù)(個) | 22 | 25 | 29 | 26 | 16 | 12 |
該興趣小組確定的研究方案是:先從這六組數(shù)據(jù)中選取 2 組,用剩下的 4 組數(shù)據(jù)求 線性回歸方程,再用被選取的 2 組數(shù)據(jù)進行檢驗;
(Ⅰ)求選取的 2 組數(shù)據(jù)恰好是相鄰兩個月的概率;
(Ⅱ)若選取的是1月與6月的兩組數(shù)據(jù),請根據(jù)2至5月份的數(shù)據(jù),求出 關于的線性回歸方程 ;
(Ⅲ)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2人, 則認為得到的線性回歸方程是理想的,試問該小組所得線性回歸方程是否理想?
附:對于一組數(shù)據(jù), ,…,( ,其回歸直線 的斜率和截距的最小二乘估計分別為
, .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某學校餐廳新推出A、B、C、D四款套餐,某一天四款套餐銷售情況的條形圖如下.為了了解同學對新推出的四款套餐的評價,對每位同學都進行了問卷調(diào)查,然后用分層抽樣的方法從調(diào)查問卷中抽取20份進行統(tǒng)計,統(tǒng)計結(jié)果如下面表格所示:
滿意 | 一般 | 不滿意 | |
A套餐 | 50% | 25% | 25% |
B套餐 | 80% | 0 | 20% |
C套餐 | 50% | 50% | 0 |
D套餐 | 40% | 20% | 40% |
(Ⅰ)若同學甲選擇的是A款套餐,求甲的調(diào)查問卷被選中的概率;
(Ⅱ)若想從調(diào)查問卷被選中且填寫不滿意的同學中再選出2人進行面談,求這兩人中至少有一人選擇的是D款套餐的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知直線l1:x+my+1=0和l2:(m-3)x-2y+(13-7m)=0.
(1)若l1⊥l2,求實數(shù)m的值;
(2)若l1∥l2,求l1與l2之間的距離d.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在多面體ABCDFE中,四邊形ABCD是矩形,AB∥EF,AB=2EF,∠EAB=90°,平面ABFE⊥平面ABCD.
(1)若G點是DC的中點,求證:FG∥平面AED.
(2)求證:平面DAF⊥平面BAF.
(3)若AE=AD=1,AB=2,求三棱錐D-AFC的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列是等差數(shù)列,;數(shù)列的前項和是,且+=1.
(1)求數(shù)列的通項公式;
(2)求證:數(shù)列是等比數(shù)列.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的右焦點為,且點在橢圓上,為坐標原點
(1)求橢圓的標準方程
(2)過橢圓上異于其頂點的任一點,作圓的切線,切點分別為(不在坐標軸上),若直線的橫縱截距分別為,求證:為定值
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com