已知數(shù)列{an}中,a3=2,a7=5,又?jǐn)?shù)列{
an+1
}
是等比數(shù)列,則a11=
 
考點(diǎn):等比數(shù)列的通項(xiàng)公式
專題:等差數(shù)列與等比數(shù)列
分析:根據(jù)題意和等比數(shù)列的性質(zhì)先求出
a11+1
,再求出a11的值.
解答: 解:因?yàn)閿?shù)列{
an+1
}
是等比數(shù)列,a3=2,a7=5,
所以
a3+1
=
3
,
a7+1
=
6
,
由等比數(shù)列的性質(zhì)得,(
a7+1
)
2
=
a3+1
a11+1
,
解得
a11+1
=
12
,即a11=11,
故答案為:11.
點(diǎn)評(píng):本題考查了等比數(shù)列的性質(zhì),屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=-x2-4x+1,x∈[-4,1],的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓C:(x+2)2+y2=4,相互垂直的兩條直線l1、l2都過(guò)點(diǎn)A(2,0).若圓心為M(1,m)(m>0)的圓和圓C外切且與直線l1、l2都相切,則圓M的方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知α是平面,m,n是直線,則下列命題正確的是( 。
A、若m∥n,m∥α,則n∥α
B、若m⊥α,n∥α,則m⊥n
C、若m⊥α,m⊥n,則n⊥α
D、若m∥α,n∥α,則m∥n

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

等差數(shù)列{an}中,已知3a5=7a10,a1<0,則當(dāng)n=
 
前n項(xiàng)的和Sn達(dá)到最。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

要使y=x2-2ax+1在[1,2]上具有單調(diào)性,則a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

方程tanx=2的解集為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)=
x2+1,x≤10
lgx,x>10
,則f[f(100)]=( 。
A、lg101B、5
C、101D、0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等差數(shù)列{an}中,a7=
1
4
,則a1+a6+a8+a13等于
 

查看答案和解析>>

同步練習(xí)冊(cè)答案