(本小題滿分12分)如圖,三棱柱的各棱長均為2,側(cè)面底面,側(cè)棱與底面所成的角為.
(1) 求直線與底面所成的角;
(2) 在線段上是否存在點(diǎn),使得平面平面?若存在,求出的長;若不存在,請說明理由。
(1);(2)。
解析試題分析:(1)根據(jù)題意建立空間直角坐標(biāo)系,然后表示平面的法向量和直線的斜向量,進(jìn)而利用向量的夾角公式得到線面角的求解。
(2)假設(shè)存在點(diǎn)滿足題意,然后利用向量的垂直關(guān)系,得到點(diǎn)的坐標(biāo)。
解:(1)作于,
∵側(cè)面平面,
則,,,,,
∴,又底面的法向量 …4分
設(shè)直線與底面所成的角為,則,∴
所以,直線與底面所成的角為. …6分
(2)設(shè)在線段上存在點(diǎn),設(shè)=,,則
…7分
設(shè)平面的法向量
令 …9分
設(shè)平面的法向量
令 …10分
要使平面平面,則
…12分
考點(diǎn):本題主要是考查線面角的求解,以及面面垂直的探索性命題的運(yùn)用。
點(diǎn)評:解決該試題的關(guān)鍵是合理的建立空間直角坐標(biāo)系,正確的表示點(diǎn)的坐標(biāo),得到平面的法向量和斜向量,進(jìn)而結(jié)合數(shù)量積的知識來證明垂直和求解角的問題。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分12分)如圖,在直三棱柱中,底面為等邊三角形,且,、、分別是,的中點(diǎn).
(1)求證:∥;
(2)求證:;
(3) 求直線與平面所成的角.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)如圖,在四棱錐中,底面是矩形,,、分別為線段、的中點(diǎn),⊥底面.
(Ⅰ)求證:∥平面;
(Ⅱ)求證:平面^平面;
(Ⅲ)若,求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在長方體中,,且.
(I)求證:對任意,總有;
(II)若,求二面角的余弦值;
(III)是否存在,使得在平面上的射影平分?若存在, 求出的值, 若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知正方形ABCD的邊長為1,F(xiàn)D⊥平面ABCD,EB⊥平面ABCD,F(xiàn)D=BE=1,M為BC邊上的動點(diǎn).試探究點(diǎn)M的位置,使F—AE—M為直二面角
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
幾何體的三視圖如圖,與交于點(diǎn),分別是直線的中點(diǎn),
(I)面;
(II)面;
(Ⅲ)求二面角的平面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在四棱錐P—ABCD中,PA⊥平面ABCD,四邊形ABCD為正方形,AB=4,PA=3,點(diǎn)A在PD上的射影為點(diǎn)G,點(diǎn)E在AB上,平面PEC⊥平面PDC.
(1)求證:AG∥平面PEC;
(2)求AE的長;
(3)求二面角E—PC—A的正弦值.(本題滿分14分)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖所示的長方體中,底面是邊長為的正方形,為與的交點(diǎn),,是線段的中點(diǎn).
(1)求證:平面;
(2)求三棱錐的體積
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com