(2013•浙江)設m、n是兩條不同的直線,α、β是兩個不同的平面,(  )
分析:用直線與平面平行的性質定理判斷A的正誤;用直線與平面平行的性質定理判斷B的正誤;用線面垂直的判定定理判斷C的正誤;通過面面垂直的判定定理進行判斷D的正誤.
解答:解:A、m∥α,n∥α,則m∥n,m與n可能相交也可能異面,所以A不正確;
B、m∥α,m∥β,則α∥β,還有α與β可能相交,所以B不正確;
C、m∥n,m⊥α,則n⊥α,滿足直線與平面垂直的性質定理,故C正確.
D、m∥α,α⊥β,則m⊥β,也可能m∥β,也可能m∩β=A,所以D不正確;
故選C.
點評:本題主要考查線線,線面,面面平行關系及垂直關系的轉化,考查空間想象能力能力.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2013•浙江)設
e1
、
e2
為單位向量,非零向量
b
=x
e1
+y
e2
,x、y∈R.若
e1
、
e2
的夾角為30°,則
|x|
|
b
|
的最大值等于
2
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•浙江)設a,b∈R,若x≥0時恒有0≤x4-x3+ax+b≤(x2-1)2,則ab等于
-1
-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•浙江)設F為拋物線C:y2=4x的焦點,過點P(-1,0)的直線l交拋物線C于兩點A,B,點Q為線段AB的中點,若|FQ|=2,則直線l的斜率等于
不存在
不存在

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•浙江)設袋子中裝有a個紅球,b個黃球,c個藍球,且規(guī)定:取出一個紅球得1分,取出一個黃球2分,取出藍球得3分.
(1)當a=3,b=2,c=1時,從該袋子中任取(有放回,且每球取到的機會均等)2個球,記隨機變量ξ為取出此2球所得分數(shù)之和.,求ξ分布列;
(2)從該袋子中任。ㄇ颐壳蛉〉降臋C會均等)1個球,記隨機變量η為取出此球所得分數(shù).若Eη=
5
3
,Dη=
5
9
,求a:b:c.

查看答案和解析>>

同步練習冊答案