已知在定義域上是減函數(shù),且的取值范圍是_____________

試題分析:因?yàn)椋?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020404016561.png" style="vertical-align:middle;" />在定義域上是減函數(shù),且
所以,,解得,,故答案為。
點(diǎn)評(píng):中檔題,抽象不等式解法,一般是利用函數(shù)的奇偶性、單調(diào)性,轉(zhuǎn)化成具體不等式(組)求解。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知定義域?yàn)镽的函數(shù)是奇函數(shù).
(Ⅰ)求a的值;
(Ⅱ)判斷的單調(diào)性并證明;
(Ⅲ)若對(duì)任意的,不等式恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù),.
(I)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)時(shí),函數(shù)恒成立,求實(shí)數(shù)的取值范圍;
(Ⅲ)設(shè)正實(shí)數(shù)滿足,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)
(Ⅰ)當(dāng)時(shí),求曲線在原點(diǎn)處的切線方程;
(Ⅱ)當(dāng)時(shí),討論函數(shù)在區(qū)間上的單調(diào)性;
(Ⅲ)證明不等式對(duì)任意成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

.已知函數(shù),若方程有兩個(gè)實(shí)數(shù)根,則的取值范圍是(     )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

下列函數(shù)在(0,+)上是增函數(shù)的是
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

下列四個(gè)函數(shù)中,既是定義域上的奇函數(shù)又在區(qū)間內(nèi)單調(diào)遞增的是(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù)上的最大值和最小值分別是(  )
A.2,1B.2,-7C.2,-1D.-1,-7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù),
(1) 當(dāng)時(shí),求曲線處的切線方程;
(2)求函數(shù)的單調(diào)區(qū)間.

查看答案和解析>>

同步練習(xí)冊(cè)答案