【題目】函數(shù)f(x)= +lg(2x+1)的定義域為(
A.(﹣5,+∞)
B.[﹣5,+∞)
C.(﹣5,0)
D.(﹣2,0)

【答案】A
【解析】解:由題意得: ,解得x>﹣5
∴原函數(shù)的定義域為(﹣5,+∞)
故選A
【考點精析】關(guān)于本題考查的函數(shù)的定義域及其求法和對數(shù)函數(shù)的定義域,需要了解求函數(shù)的定義域時,一般遵循以下原則:①是整式時,定義域是全體實數(shù);②是分式函數(shù)時,定義域是使分母不為零的一切實數(shù);③是偶次根式時,定義域是使被開方式為非負(fù)值時的實數(shù)的集合;④對數(shù)函數(shù)的真數(shù)大于零,當(dāng)對數(shù)或指數(shù)函數(shù)的底數(shù)中含變量時,底數(shù)須大于零且不等于1,零(負(fù))指數(shù)冪的底數(shù)不能為零;對數(shù)函數(shù)的定義域范圍:(0,+∞)才能得出正確答案.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知向量 , ,且 ,f(x)= ﹣2λ| |(λ為常數(shù)),求:
(1) 及| |;
(2)若f(x)的最小值是 ,求實數(shù)λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】10名同學(xué)參加投籃比賽,每人投20球,投中的次數(shù)用莖葉圖表示(如圖),設(shè)其平均數(shù)為a,中位數(shù)為b,眾數(shù)為c,則有(

A.a>b>c
B.b>c>a
C.c>a>b
D.c>b>a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某印刷廠為了研究印刷單冊書籍的成本y(單位:元)與印刷冊數(shù)x(單位:千冊)之間的關(guān)系,在印制某種書籍時進(jìn)行了統(tǒng)計,相關(guān)數(shù)據(jù)見下表:

根據(jù)以上數(shù)據(jù),技術(shù)人員分別借助甲、乙兩種不同的回歸模型,得到了兩個回歸方程,甲:

為了評價兩種模型的擬合效果,完成以下任務(wù):

(1)(。┩瓿上卤恚ㄓ嬎憬Y(jié)果精確到0.1):

)分別計算模型甲與模型乙的殘差平方和,并通過比較,的大小,判斷哪個模型擬合效果更好.

(2)該書上市后,受到廣大讀者的熱烈歡迎,不久便全部售罄,于是印刷廠決定進(jìn)行二次印刷,根據(jù)市場調(diào)查,新需求量為8千冊(概率為0.8)或10千冊(概率為0.2),若印刷廠以沒測5元的價格將書籍出售給訂貨商,問印刷廠二次印刷8千冊還是10千冊恒獲得更多的利潤?(按(1)中擬合效果較好的模型計算印刷單冊書的成本)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)討論函數(shù)的單調(diào)性;

(2)若直線與曲線的交點的橫坐標(biāo)為,且,求整數(shù)所有可能的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCED中,PD⊥面ABCD,四邊形ABCD為平行四邊形,∠DAB=60°,AB=PA=2AD=4,
(1)若E為PC中點,求證:PA∥平面BDE
(2)求三棱錐D﹣BCP的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)=log (x2﹣ax+3)在(﹣∞,1)上單調(diào)遞增,則a的范圍是(
A.(2,+∞)
B.[2,+∞)
C.[2,4]
D.[2,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)上是減函數(shù),在上是增函數(shù),函數(shù)上有三個零點.

(1)求的值;

(2)若1是其中一個零點,求的取值范圍;

(3)若,試問過點(2,5)可作多少條直線與曲線y=g(x)相切?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=|x﹣a|﹣ +a,x∈[1,6],a∈R.
(1)若a=1,試判斷并證明函數(shù)f(x)的單調(diào)性;
(2)當(dāng)a∈(1,6)時,求函數(shù)f(x)的最大值的表達(dá)式M(a).

查看答案和解析>>

同步練習(xí)冊答案