【題目】如圖,四棱錐的底面是直角梯形,,,和是兩個(gè)邊長(zhǎng)為2的正三角形,,為的中點(diǎn),為的中點(diǎn).
(1)證明:平面.
(2)在線段上是否存在一點(diǎn),使直線與平面所成角的正弦值為?若存在,求出點(diǎn)的位置;若不存在,說(shuō)明理由.
【答案】(1)見(jiàn)解析;(2)當(dāng)時(shí),直線與平面所成角的正弦值為.
【解析】
(1)設(shè)為的中點(diǎn),連接,,證明OE為三角形BPF的中位線,得即可證明(2)證明平面,由,過(guò)分別作,的平行線,分別以它們作為軸,以為軸建立如圖所示的空間直角坐標(biāo)系,求平面的法向量,假設(shè)線段上存在一點(diǎn),設(shè),得,由直線與平面所成角的正弦值為列的方程求解即可
(1)證明:設(shè)為的中點(diǎn),連接,,則.
∵,,,
∴四邊形為正方形.
∵為的中點(diǎn),∴為,的交點(diǎn),
∴為的中點(diǎn),即OE為三角形BPF的中位線
∴.
∵平面,平面,
∴平面.
(2)∵,為的中點(diǎn),
∴.∵,∴,
∴,.
在中,,∴.
又∵,∴平面.
又因?yàn)?/span>,所以過(guò)分別作,的平行線,分別以它們作為軸,
以為軸建立如圖所示的空間直角坐標(biāo)系,
則,,,.
假設(shè)線段上存在一點(diǎn),使直線與平面所成角的正弦值為.
設(shè),則,
即.
設(shè)平面的一個(gè)法向量為,則,即.
取,得平面的一個(gè)法向量為.
設(shè)直線與平面所成角為,令,
得,
化簡(jiǎn)并整理得,解得(舍去),或.
所以,當(dāng)時(shí),直線與平面所成角的正弦值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】商品的銷(xiāo)售價(jià)格與銷(xiāo)售量密切相關(guān),為更精準(zhǔn)地為商品確定最終售價(jià),商家對(duì)商品A按以下單價(jià)進(jìn)行試售,得到如下數(shù)據(jù):
單價(jià)x(元) | 15 | 16 | 17 | 18 | 19 |
銷(xiāo)量y(件) | 60 | 58 | 55 | 53 | 49 |
(1)求銷(xiāo)量y關(guān)于x的線性回歸方程;
(2)預(yù)計(jì)今后的銷(xiāo)售中,銷(xiāo)量與單價(jià)服從(1)中的線性回歸方程,已知每件商品A的成本是10元,為了獲得最大利潤(rùn),商品A的單價(jià)應(yīng)定為多少元?(結(jié)果保留整數(shù))
(附:,.(15×60+16×58+17×55+18×53+19×49=4648,152+162+172+182+192=1455)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司為了提高利潤(rùn),從2012年至2018年每年對(duì)生產(chǎn)環(huán)節(jié)的改進(jìn)進(jìn)行投資,投資金額與年利潤(rùn)增長(zhǎng)的數(shù)據(jù)如下表:
年 份 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 |
投資金額(萬(wàn)元) | 4.5 | 5.0 | 5.5 | 6.0 | 6.5 | 7.0 | 7.5 |
年利潤(rùn)增長(zhǎng)(萬(wàn)元) | 6.0 | 7.0 | 7.4 | 8.1 | 8.9 | 9.6 | 11.1 |
(1)請(qǐng)用最小二乘法求出y關(guān)于x的回歸直線方程;如果2019年該公司計(jì)劃對(duì)生產(chǎn)環(huán)節(jié)的改進(jìn)的投資金額是8萬(wàn)元,估計(jì)該公司在該年的年利潤(rùn)增長(zhǎng)是多少?(結(jié)果保留2位小數(shù))
(2)現(xiàn)從2012—2018年這7年中抽取2年進(jìn)行調(diào)查,記=年利潤(rùn)增長(zhǎng)-投資金額,求這兩年都是>2(萬(wàn)元)的概率.
參考公式:回歸方程中,
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知定義在上的偶函數(shù),滿足,且在區(qū)間上是增函數(shù),
①函數(shù)的一個(gè)周期為4;
②直線是函數(shù)圖象的一條對(duì)稱軸;
③函數(shù)在上單調(diào)遞增,在上單調(diào)遞減;
④函數(shù)在內(nèi)有25個(gè)零點(diǎn);
其中正確的命題序號(hào)是_____(注:把你認(rèn)為正確的命題序號(hào)都填上)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為ρcosθ+ρsinθ=1,曲線C的極坐標(biāo)方程為ρsin2θ=8cosθ.
(1)求直線l與曲線C的直角坐標(biāo)方程;
(2)設(shè)點(diǎn)M(0,1),直線l與曲線C交于不同的兩點(diǎn)P,Q,求|MP|+|MQ|的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中, , 平面, .
(1)設(shè)點(diǎn)為的中點(diǎn),求證: 平面;
(2)線段上是否存在一點(diǎn),使得直線與平面所成的角的正弦值為?若存在,試確定點(diǎn)的位置;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知等差數(shù)列{an}的公差d≠0,且a1,a3,a13成等比數(shù)列,若a1=1,Sn為數(shù)列{an}的前n項(xiàng)和,則的最小值為( 。
A.4B.3C.D.2
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某競(jìng)賽的題庫(kù)系統(tǒng)有60%的自然科學(xué)類題目,40%的文化生活類題目(假設(shè)題庫(kù)中的題目總數(shù)非常大),參賽者需從題庫(kù)中抽取3個(gè)題目作答,有兩種抽取方法:方法一是直接從題庫(kù)中隨機(jī)抽取3個(gè)題目;方法二是先在題庫(kù)中按照題目類型用分層抽樣的方法抽取10個(gè)題目作為樣本,再?gòu)倪@10個(gè)題目中任意抽取3個(gè)題目.
(1)兩種方法抽取的3個(gè)題目中,恰好有1個(gè)自然科學(xué)類題目和2個(gè)文化生活類題目的概率是否相同?若相同,說(shuō)明理由;若不同,分別計(jì)算出兩種抽取方法對(duì)應(yīng)的概率.
(2)已知某參賽者抽取的3個(gè)題目恰好有1個(gè)自然科學(xué)類題目和2個(gè)文化生活類題目,且該參賽者答對(duì)自然科學(xué)類題目的概率為,答對(duì)文化生活類題目的概率為.設(shè)該參賽者答對(duì)的題目數(shù)為X,求X的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,四棱錐P﹣ABCD中,平面PAD⊥平面ABCD,PA=PD,四邊形ABCD為等腰梯形,BC∥AD,BC=CDAD=1,E為PA的中點(diǎn).
(1)求證:EB∥平面PCD;
(2)求平面PAC與平面PCD所成角的余弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com