(13分)一個同心圓形花壇,分為兩部分,中間小圓部分種植綠色灌木,周圍的圓環(huán)分為n(n≥3,n∈N)等份,種植紅、黃、藍三色不同的花,要求相鄰兩部分種植不同顏色的花.
⑴ 如圖1,圓環(huán)分成的3等份為a1,a2,a3,有多少不同的種植方法?
如圖2,圓環(huán)分成的4等份為a1,a2,a3,a4,有多少不同的種植方法?
⑵ 如圖3,圓環(huán)分成的n等份為a1,a2,a3,……,an,有多少不同的種植方法?
)⑴如圖1,先對a1部分種植,有3種不同的種法,再對a2、a3種植,
因為a2、a3與a1不同顏色,a2、a3也不同。 所以S(3)=3×2=6(種)。
如圖2,S(4)=3×2×2×2-S(3)=18(種)。
⑵
【解析】本試題主要考查了排列組合的運用,解決實際問題,同時也考查了數(shù)列的求和的運用,數(shù)列的概念的綜合試題。
(1)先對a1部分種植,有3種不同的種法,再對a2、a3種植,
因為a2、a3與a1不同顏色,a2、a3也不同。 所以S(3)=3×2=6(種)!3分
如圖2,S(4)=3×2×2×2-S(3)=18(種)
(2)圓環(huán)分為n等份,對a1有3種不同的種法,對a2、a3、…、an都有兩種不同的種法,但這樣的種法只能保證a1與ai(i=2、3、……、n-1)不同顏色,但不能保證a1與an不同顏色.
于是一類是an與a1不同色的種法,這是符合要求的種法,記為種. 另一類是an與a1同色的種法,這時可以把an與a1看成一部分,這樣的種法相當于對n-1部分符合要求的種法,記為.共有3×2n-1種種法
因此可得到,進而分析求解。
)⑴如圖1,先對a1部分種植,有3種不同的種法,再對a2、a3種植,
因為a2、a3與a1不同顏色,a2、a3也不同。 所以S(3)=3×2=6(種)!3分
如圖2,S(4)=3×2×2×2-S(3)=18(種)!6分
⑵如圖3,圓環(huán)分為n等份,對a1有3種不同的種法,對a2、a3、…、an都有兩種不同的種法,但這樣的種法只能保證a1與ai(i=2、3、……、n-1)不同顏色,但不能保證a1與an不同顏色.
于是一類是an與a1不同色的種法,這是符合要求的種法,記為種. 另一類是an與a1同色的種法,這時可以把an與a1看成一部分,這樣的種法相當于對n-1部分符合要求的種法,記為.
共有3×2n-1種種法.………………………………………………………………9分
這樣就有.即,
則數(shù)列是首項為公比為-1的等比數(shù)列.……………10分
則
由⑴知:,∴.
∴.………………………………………………………12分
答:符合要求的不同種法有……………………………13分
科目:高中數(shù)學 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(滿分14分)一個同心圓形花壇,分為兩部分,中間小圓部分種植草坪和綠色灌木,周圍的圓環(huán)分為n(n≥3,n∈N)等份,種植紅、黃、藍三色不同的花,要求相鄰兩部分種植不同顏色的花.
(1)如圖1,圓環(huán)分成的3等份為a1,a2,a3,有多少不同的種植方法?如圖2,圓環(huán)分成的4等份為a1,a2,a3,a4,有多少不同的種植方法?
(2)如圖3,圓環(huán)分成的n等份為a1,a2,a3,……,an,有多少不同的種植方法?
|
[來源:學#科#網(wǎng)Z#X#X#K]
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com