(本小題滿分14分)
如圖:某污水處理廠要在一個(gè)矩形污水處理池的池底水平鋪設(shè)污水凈化管道是直角頂點(diǎn))來(lái)處理污水,管道越短,鋪設(shè)管道的成本越低.設(shè)計(jì)要求管道的接口的中點(diǎn),分別落在線段上。已知米,米,記

(Ⅰ)試將污水凈化管道的長(zhǎng)度表示為的函數(shù),并寫出定義域;
(Ⅱ)若,求此時(shí)管道的長(zhǎng)度;
(Ⅲ)問:當(dāng)取何值時(shí),鋪設(shè)管道的成本最低?并求出此時(shí)管道的長(zhǎng)度。

(Ⅰ) ,;
(Ⅱ)時(shí),,;
(Ⅲ)當(dāng)時(shí),所鋪設(shè)管道的成本最低,此時(shí)管道的長(zhǎng)度為米。

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)
已知函數(shù)
(1)當(dāng)x∈[2,4]時(shí).求該函數(shù)的值域;
(2)若恒成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題13分)已知函數(shù)f(x)= (a>0,x>0).
(1)求證:f(x)在(0,+∞)上是單調(diào)遞增函數(shù);
(2)若f(x)在[,2]上的值域是[,2],求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)
已知函數(shù)
(1)當(dāng)時(shí),求的極值;
(2)當(dāng)時(shí),求的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知奇函數(shù)f(x)在定義域[-2,2]內(nèi)單調(diào)遞減,求滿足f(1-m)+f(1-m2)<0的實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

定義函數(shù)
(1)令函數(shù)的圖象為曲線,若存在實(shí)數(shù),使得曲線處有斜率是的切線,求實(shí)數(shù)的取值范圍;
(2)當(dāng),且時(shí),證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)的定義域關(guān)于原點(diǎn)對(duì)稱,且滿足以下三個(gè)條件:
、是定義域中的數(shù)時(shí),有;
是定義域中的一個(gè)數(shù));
③當(dāng)時(shí),
(1)判斷之間的關(guān)系,并推斷函數(shù)的奇偶性;
(2)判斷函數(shù)上的單調(diào)性,并證明;
(3)當(dāng)函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/89/6/jlh2f1.png" style="vertical-align:middle;" />時(shí),
①求的值;②求不等式的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題12分)已知函數(shù)的圖像關(guān)于原點(diǎn)對(duì)稱,并且當(dāng)時(shí),,試求上的表達(dá)式,并畫出它的圖像,根據(jù)圖像寫出它的單調(diào)區(qū)間。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿分14分)已知函數(shù)
(1)若,求x的值;
(2)若對(duì)于恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案