【題目】已知四棱錐SABCD中,底面ABCD是邊長(zhǎng)為4的菱形,∠BAD60°,SASD2,點(diǎn)E是棱AD的中點(diǎn),點(diǎn)F在棱SC上,且λ,SA//平面BEF

1)求實(shí)數(shù)λ的值;

2)求三棱錐FEBC的體積.

【答案】1;(2

【解析】

1)連接AC,設(shè)ACBEG,根據(jù)線面平行的性質(zhì)定理,結(jié)合平行線的性質(zhì),通過(guò)相似三角形的性質(zhì)進(jìn)行求解即可;

2)根據(jù)菱形的性質(zhì)、勾股定理的逆定理、線面垂直的判定定理,結(jié)合三棱錐的體積公式,三角形的面積公式進(jìn)行求解即可.

1)連接AC,設(shè)ACBEG,則平面SAC∩平面EFBFG,

SA∥平面EFB,∴SAFG,

∵△GEA∽△GBC,∴

,

SF,即;

2)∵SASD2,∴SEAD,SE4

又∵ABAD4,∠BAD60°,∴BE2

SE2+BE2SB2,則SEBE平面ABCD,

SE⊥平面ABCD

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) (其中為常數(shù)且)在處取得極值.

(1)當(dāng)時(shí),求的極大值點(diǎn)和極小值點(diǎn);

(2)若上的最大值為1,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】心理學(xué)家發(fā)現(xiàn)視覺和空間能力與性別有關(guān),某數(shù)學(xué)興趣小組為了驗(yàn)證這個(gè)結(jié)論,從興趣小組中按分層抽樣的方法抽取50名同學(xué),給所有同學(xué)幾何和代數(shù)各一題,讓各位同學(xué)自由選擇一道題進(jìn)行解答,統(tǒng)計(jì)情況如下表:(單位:人)

幾何題

代數(shù)題

總計(jì)

男 同學(xué)

22

8

30

女同學(xué)

8

12

20

總計(jì)

30

20

50

(1)能否據(jù)此判斷有97.5%的把握認(rèn)為視覺和空間能力與性別有關(guān)?

(2)現(xiàn)從選擇幾何題的8名女生中任意抽取兩人對(duì)他們的答題進(jìn)行研究,記甲、乙兩名女生被抽到的人數(shù)為,的分布列及數(shù)學(xué)期望.

附表及公式:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知是不重合直線,是不重合平面,則下列命題

①若,則

②若,則

③若、,則

④若,則

⑤若,則

為假命題的是

A. ①②③ B. ①②⑤ C. ③④⑤ D. ①②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱錐中,分別為棱的中點(diǎn).已知,.

求證:(1)直線PA平面DEF;

(2)平面BDE⊥平面ABC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) .

(1)求函數(shù)的單調(diào)區(qū)間;

(2)當(dāng)時(shí),求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方體中,,,分別是,,,的中點(diǎn).

(Ⅰ)求證:,,四點(diǎn)共面;

(Ⅱ)求證:平面∥平面;

(Ⅲ)畫出平面與正方體側(cè)面的交線(需要有必要的作圖說(shuō)明、保留作圖痕跡).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)是奇函數(shù),是偶函數(shù),且其中.

1)求的表達(dá)式,并求函數(shù)的值域

2)若關(guān)于的方程在區(qū)間內(nèi)恰有兩個(gè)不等實(shí)根,求常數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓經(jīng)過(guò)點(diǎn),離心率.

(1)求的方程;

(2)設(shè)直線經(jīng)過(guò)點(diǎn)且與相交于兩點(diǎn)(異于點(diǎn)),記直線的斜率為,直線的斜率為,證明: 為定值.

查看答案和解析>>

同步練習(xí)冊(cè)答案