【題目】已知 為整數(shù),且,為正整數(shù),,,記.

(1)試用分別表示;

(2)用數(shù)學歸納法證明:對一切正整數(shù)均為整數(shù).

【答案】(1) ; (2)見解析.

【解析】

1)令,結合條件,即可求解

2)運用數(shù)學歸納法和兩角和差的公式,結合條件,即可得到證明.

(1)由題意,令,可得

所以

(2) ①當n1時,由(1)A1x2y2B12xy.

因為x,y為整數(shù),

所以A1B1均為整數(shù),所以結論成立;

②當nk(k≥2kN*)時,假設AkBk均為整數(shù),

則當nk1時,Ak1(x2y2)k1cos (k1)θ

(x2y2)(x2y2)k(cos kθcos θsin kθsin θ)

(x2y2)cos θ·(x2y2)kcos (x2y2)ksin ·(x2y2)sinθ

A1·AkB1·Bk.

因為A1,B1,均為整數(shù),所以Ak1也為整數(shù),

即當nk1時,結論也成立.

綜合①②得,對一切正整數(shù)nAn均為整數(shù).

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)fx=x2-a+1x+alnx+1

(Ⅰ)若x=3fx)的極值點,求fx)的極大值;

(Ⅱ)求a的范圍,使得fx≥1恒成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知平面直角坐標系,直線過點,且傾斜角為,以為極點,軸的非負半軸為極軸建立極坐標系,圓的極坐標方程為

1)求直線的參數(shù)方程和圓的標準方程;

2)設直線與圓交于、兩點,若,求直線的傾斜角的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】己知函數(shù)

(1)時,判斷函數(shù)上的零點的個數(shù);

(2),是否存在實數(shù),對,有恒成立,若存在,求出的范圍:若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,某機械廠要將長,寬的長方形鐵皮進行裁剪.已知點的中點,點在邊上,裁剪時先將四邊形沿直線翻折到處(點,分別落在直線下方點,處,交邊于點,再沿直線裁剪.

1)當時,試判斷四邊形的形狀,并求其面積;

2)若使裁剪得到的四邊形面積最大,請給出裁剪方案,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱錐P-ABC中,ACBC,且,AC=BC=2,DE分別為AB,PB中點,PD⊥平面ABCPD=3.

(1)求直線CE與直線PA夾角的余弦值;

(2)求直線PC與平面DEC夾角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】近一段時間來,由于受非洲豬瘟的影響,各地豬肉價格普遍上漲,生豬供不應求。各大養(yǎng)豬場正面臨巨大挑戰(zhàn),目前各項針對性政策措施對于生豬整體產(chǎn)能恢復、激發(fā)養(yǎng)殖戶積極性的作用正在逐步顯現(xiàn).

現(xiàn)有甲、乙兩個規(guī)模一致的大型養(yǎng)豬場,均養(yǎng)有1萬頭豬.根據(jù)豬的重量,將其分為三個成長階段如下表.

豬生長的三個階段

階段

幼年期

成長期

成年期

重量(Kg

根據(jù)以往經(jīng)驗,兩個養(yǎng)豬場內(nèi)豬的體重均近似服從正態(tài)分布.

由于我國有關部門加強對大型養(yǎng)豬場即將投放市場的成年期的豬監(jiān)控力度,高度重視其質量保證,為了養(yǎng)出健康的成年活豬,甲、乙兩養(yǎng)豬場引入兩種不同的防控及養(yǎng)殖模式.已知甲、乙兩個養(yǎng)豬場內(nèi)一頭成年期豬能通過質檢合格的概率分別為,

(1)試估算各養(yǎng)豬場三個階段的豬的數(shù)量;

(2)已知甲養(yǎng)豬場出售一頭成年期的豬,若為健康合格的豬 ,則可盈利元,若為不合格的豬,則虧損元;乙養(yǎng)豬場出售一頭成年期的豬,若為健康合格的豬 ,則可盈利元,若為不合格的豬,則虧損元.記為甲、乙養(yǎng)豬場各出售一頭成年期豬所得的總利潤,求隨機變量的分布列,假設兩養(yǎng)豬場均能把成年期豬售完,求兩養(yǎng)豬場的總利潤期望值.

(參考數(shù)據(jù):若,則,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】更相減損術是《九章算術》中介紹的一種用于求兩個正整數(shù)的最大公約數(shù)的方法,該方法的算法流程如圖所示,根據(jù)程序框圖計算,當a35b28時,該程序框圖運行的結果是(   )

A.a6,b7B.a7,b7C.a7,b6D.a8b8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖1,平面四邊形ABCD中,,BC=CD.CBD沿BD折成如圖2所示的三棱錐,使二面角的大小為.

1)證明:;

2)求直線BC'與平面C'AD所成角的正弦值.

查看答案和解析>>

同步練習冊答案