9.設a=log${\;}_{\frac{1}{3}}}$2,b=20.6,c=log43,則a,b,c的大小關系為(  )
A.a>b>cB.c>b>aC.b>c>aD.a>c>b

分析 根據(jù)指數(shù)函數(shù)的圖象和性質(zhì),對數(shù)函數(shù)的圖象和性質(zhì),逐一分析a,b,c的大小,可得答案.

解答 解:a=log${\;}_{\frac{1}{3}}}$2<0,b=20.6>1,0<c=log43<1,
故b>c>a,
故選:C.

點評 本題考查的知識點是利用指數(shù)函數(shù)的圖象和性質(zhì),對數(shù)函數(shù)的圖象和性質(zhì),比較數(shù)的大小,難度中檔.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

10.已知橢圓$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{6}}{3}$,坐標原點O到過點A(0,-b)和B(a,0)的直線的距離為$\frac{\sqrt{3}}{2}$.又直線y=kx+m(k≠0,m≠0)與該橢圓交于不同的兩點C,D.且C,D兩點都在以A為圓心的同一個圓上.
(1)求橢圓的方程;
(2)求△ABC面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知無窮數(shù)列{an}的各項都是正數(shù),其前n項和為Sn,且滿足:a1=a,rSn=anan+1-1,其中a≠1,常數(shù)r∈N;
(1)求證:an+2-an是一個定值;
(2)若數(shù)列{an}是一個周期數(shù)列(存在正整數(shù)T,使得對任意n∈N*,都有an+T=an成立,則稱{an}為周期數(shù)列,T為它的一個周期,求該數(shù)列的最小周期;
(3)若數(shù)列{an}是各項均為有理數(shù)的等差數(shù)列,cn=2•3n-1(n∈N*),問:數(shù)列{cn}中的所有項是否都是數(shù)列{an}中的項?若是,請說明理由,若不是,請舉出反例.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.已知函數(shù)f(x)=$\left\{\begin{array}{l}{x^2},x≤a\\ 2x+3,x>a\end{array}$,若方程f(x)+2x-8=0恰有兩個不同實根,則實數(shù)a的取值范圍是(  )
A.$[-4,\frac{5}{4}]∪[2,+∞)$B.[-4,2]C.$(\frac{5}{4},2]$D.$[{-4,\frac{5}{4}}]$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知雙曲線C1:$\left\{\begin{array}{l}x=3cosα\\ y=2sinα\end{array}$(α為參數(shù)),再以原點O為極點,x軸的正半軸為極軸建立極坐標系,曲線C的極坐標方程為2ρsinθ+ρcosθ=10.
(1)求曲線C1的普通方程和曲線C的直角坐標方程;
(2)若點M在曲線C1上運動,試求出M到曲線C的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.設數(shù)列{an}的前n項和為Sn.已知2Sn=3n+3,則{an}的通項公式為${a_n}=\left\{\begin{array}{l}3,\;\;\;\;n=1\\{3^{n-1}},n>1\end{array}\right.$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.程序如圖,要使此程序能運算出“1+2+…+100”的結果,需將語句“i=i+1”加在( 。 
A.①處B.②處C.③處D.④處

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.已知f(x)=$\left\{{\begin{array}{l}{{x^2}-1,(x>0)}\\{f(x+1)-1,(x≤0)}\end{array}}$,則f(-1)=( 。
A.-2B.-1C.0D.1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.如圖,已知一個八面體的各條棱長均為1,四邊形ABCD 為正方形,則下列命題中的假命題是( 。
A.不平行的兩條棱所在的直線所成的角是60o或90o
B.四邊形AECF是正方形
C.點A到平面BCE的距離為$\frac{\sqrt{6}}{3}$
D.該八面體的頂點不會在同一個球面上.

查看答案和解析>>

同步練習冊答案