某市公租房房屋位于A、B、C三個地區(qū),設每位申請人只申請其中一個片區(qū)的房屋,且申請其中任一個片區(qū)的房屋是等可能的,求該市的任4位申請人中:
(1)若有2人申請A片區(qū)房屋的概率;
(2)申請的房屋在片區(qū)的個數(shù)的X分布列與期望.
(1)    (2)X的分布列為:
X
1
2
3
p




解:(1)所有可能的申請方式有34種,恰有2人申請A片區(qū)房源的申請方式有C·22種,從而恰有2人申請A片區(qū)房源的概率為.
(2)X的所有可能值為1,2,3.又p(X=1)=
p(X=2)=,p(X=3)=
綜上知,X的分布列為:
X
1
2
3
p



從而有E(X)=1×+2×+3×.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

甲向靶子A射擊兩次,乙向靶子射擊一次.甲每次射擊命中靶子的概率為0.8,命中得5分;乙命中靶子的概率為0.5,命中得10分.
(1)求甲、乙二人共命中一次目標的概率;
(2)設X為二人得分之和,求X的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

某校舉行中學生“日常生活小常識”知識比賽,比賽分為初賽和復賽兩部分,初賽采用選手從備選題中選一題答一題的方式進行;每位選手最多有5次答題機會,選手累計答對3題或答錯3題即終止比賽,答對3題者直接進入復賽,答錯3題者則被淘汰.已知選手甲答對每個題的概率均為,且相互間沒有影響.
(1)求選手甲進入復賽的概率;
(2)設選手甲在初賽中答題的個數(shù)為,試求的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

小明參加完高考后,某日路過一家電子游戲室,注意到一臺電子游戲機的規(guī)則是:你可在1,2,3,4,5,6點中選一個,押上賭注a元。擲3枚骰子,如果所押的點數(shù)出現(xiàn)1次、2次、3次,那么原來的賭注仍還給你,并且你還分別可以收到賭注的1倍、2倍、3倍的獎勵。如果所押的點數(shù)不出現(xiàn),那么賭注就被莊家沒收。
(1)求擲3枚骰子,至少出現(xiàn)1枚為1點的概率;
(2)如果小明準備嘗試一次,請你計算一下他獲利的期望值,并給小明一個正確的建議。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

一個籃球運動員投籃一次得3分的概率為,得2分的概率為,不得分的概率為、、),已知他投籃一次得分的數(shù)學期望為2(不計其它得分情況),則的最大值為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

甲、乙兩支排球隊進行比賽,約定先勝局者獲得比賽的勝利,比賽隨即結束。除第五局甲隊獲勝的概率是外,其余每局比賽甲隊獲勝的概率都是。假設各局比賽結果相互獨立。
(1)分別求甲隊以勝利的概率;
(2)若比賽結果為求,則勝利方得分,對方得分;若比賽結果為,則勝利方得分、對方得分。求乙隊得分的分布列及數(shù)學期望。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

某單位有一臺電話交換機,其中有8個分機.設每個分機在1h內平均占線10min,并且各個分機是否占線是相互獨立的,則任一時刻占線的分機數(shù)目X的數(shù)學期望為________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

A、B兩個投資項目的利潤率分別為隨機變量X1和X2,根據(jù)市場分析,X1和X2的分布列分別為
X1
5%
10%
P
0.8
0.2
 
X2
2%
8%
12%
P
0.2
0.5
0.3
(1)在A,B兩個項目上各投資100萬元,Y1和Y2分別表示投資項目A和B所獲得的利潤,求方差V(Y1)、V(Y2);
(2)將x(0≤x≤100)萬元投資A項目,100-x萬元投資B項目,f(x)表示投資A項目所得利潤的方差與投資B項目所得利潤的方差的和.求f(x)的最小值,并指出x為何值時,f(x)取到最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若X是離散型隨機變量,,且,又已知,則( )
A.B.C.D.

查看答案和解析>>

同步練習冊答案