【題目】在△ABC中,內(nèi)角A、B、C所對(duì)的邊分別為a、b、c,a=
(1)求bcosC+ccosB的值;
(2)若cosA= ,求b+c的最大值.

【答案】
(1)解:△ABC中,bcosC+ccosB=b +c =a= ,
(2)解:若cosA= ,則A= ,由余弦定理可得a2=3=b2+c2﹣2bccosA=(b+c)2﹣3bc,

∴(b+c)2=3+3bc≤3+3 ,∴b+c≤2 ,當(dāng)且僅當(dāng)b=c時(shí),取等號(hào),故b+c的最大值為2


【解析】(1)利用余弦定理求得bcosC+ccosB的值.(2)若cosA= ,利用余弦定理以及基本不等式求得b+c的最大值.
【考點(diǎn)精析】本題主要考查了余弦定理的定義的相關(guān)知識(shí)點(diǎn),需要掌握余弦定理:;;才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知四邊形ABCD是邊長(zhǎng)為1的正方形,PA⊥平面ABCD,N是PC的中點(diǎn).
(Ⅰ)若PA=1,求二面角B﹣PC﹣D的大。
(Ⅱ)求AN與平面PCD所成角的正弦值的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=1﹣|x|+ ,若f(x﹣2)>f(3),則x的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在菱形中, 相交于點(diǎn) 平面, .

(I)求證: 平面

(II)當(dāng)直線(xiàn)與平面所成的角的余弦值為時(shí),求證:

(III)在(II)的條件下,求異面直線(xiàn)所成的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某研究所計(jì)劃利用“神七”宇宙飛船進(jìn)行新產(chǎn)品搭載實(shí)驗(yàn),計(jì)劃搭載新產(chǎn)品A、B,要根據(jù)該產(chǎn)品的研制成本、產(chǎn)品重量、搭載實(shí)驗(yàn)費(fèi)用和預(yù)計(jì)產(chǎn)生收益來(lái)決定具體安排,通過(guò)調(diào)查,有關(guān)數(shù)據(jù)如表:

產(chǎn)品A(件)

產(chǎn)品B(件)

研制成本、搭載費(fèi)用之和(萬(wàn)元)

20

30

計(jì)劃最大資金額300萬(wàn)元

產(chǎn)品重量(千克)

10

5

最大搭載重量110千克

預(yù)計(jì)收益(萬(wàn)元)

80

60

試問(wèn):如何安排這兩種產(chǎn)品的件數(shù)進(jìn)行搭載,才能使總預(yù)計(jì)收益達(dá)到最大,最大收益是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】福利彩票“雙色球”中紅球的號(hào)碼可以從01,02,03,…,32,33這33個(gè)二位號(hào)碼中選取,小明利用如圖所示的隨機(jī)數(shù)表選取紅色球的6個(gè)號(hào)碼,選取方法是從第1行第9列和第10列的數(shù)字開(kāi)始從左到右依次選取兩個(gè)數(shù)字,則第四個(gè)被選中的紅色球號(hào)碼為( )

81 47 23 68 63 93 17 90 12 69 86 81 62 93 50 60 91 33 75 85 61 39 85

06 32 35 92 46 22 54 10 02 78 49 82 18 86 70 48 05 46 88 15 19 20 49

A. 12 B. 33 C. 06 D. 16

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲乙兩人進(jìn)行兩種游戲,兩種游戲規(guī)則如下:游戲Ⅰ:口袋中有質(zhì)地、大小完全相同的5個(gè)球,編號(hào)分別為1,2,3,4,5,甲先摸出一個(gè)球,記下編號(hào),放回后乙再摸一個(gè)球,記下編號(hào),如果兩個(gè)編號(hào)的和為偶數(shù)算甲贏(yíng),否則算乙贏(yíng).游戲Ⅱ:口袋中有質(zhì)地、大小完全相同的6個(gè)球,其中4個(gè)白球,2個(gè)紅球,由裁判有放回的摸兩次球,即第一次摸出記下顏色后放回再摸第二次,摸出兩球同色算甲贏(yíng),摸出兩球不同色算乙贏(yíng).
(Ⅰ)求游戲Ⅰ中甲贏(yíng)的概率;
(Ⅱ)求游戲Ⅱ中乙贏(yíng)的概率;并比較這兩種游戲哪種游戲更公平?試說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】正三棱錐P﹣ABC中,CM=2PM,CN=2NB,對(duì)于以下結(jié)論:
①二面角B﹣PA﹣C大小的取值范圍是( ,π);
②若MN⊥AM,則PC與平面PAB所成角的大小為 ;
③過(guò)點(diǎn)M與異面直線(xiàn)PA和BC都成 的直線(xiàn)有3條;
④若二面角B﹣PA﹣C大小為 ,則過(guò)點(diǎn)N與平面PAC和平面PAB都成 的直線(xiàn)有3條.
正確的序號(hào)是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,隔河看兩目標(biāo)A、B,但不能到達(dá),在岸邊選取相距 km的C、D兩點(diǎn),并測(cè)得∠ACB=75°,∠BCD=45°,∠ADC=30°,∠ADB=45°(A、B、C、D在同一平面內(nèi)),求兩目標(biāo)A、B之間的距離.

查看答案和解析>>

同步練習(xí)冊(cè)答案