在正方體ABCD-A1B1C1D1中,M,N分別是棱AB,BC上異于端點(diǎn)的點(diǎn),
(1)證明△B1MN不可能是直角三角形;
(2)如果M,N分別是棱AB,BC的中點(diǎn),
(。┣笞C:平面B1MN⊥平面BB1D1D;
(ⅱ)若在棱BB1上有一點(diǎn)P,使得B1D面PMN,求B1P與PB的比值.
(1)用反證法.如果△B1MN是直角三角形,
不妨設(shè)B1MN=
π
2
,則MN⊥B1M,(1分)
而B1B⊥面ABCD,MN?面ABCD,∴B1B⊥MN,B1B∩B1M=B1,∴MN⊥面ABB1A1,∵AB?面ABB1A1,(2分)∴MN⊥AB,即∠BMN=
π
2
,與∠MBN=
π
2
矛盾!(3分)∴△B1MN不可能是直角三角形.(4分)
(2)連接MN,設(shè)MN∩BD=Q則MNAC(5分)
∴AC⊥BD,MN⊥BD(7分)
又∵DD1⊥面ABCD∴DD1⊥MN
∴平面B1MN⊥面BDD1(9分)
(3)連接PM,PN則面PMN∩面BDD1=PQ(10分)
當(dāng)BD1PQ時(shí),BD1面PMN(11分)
又M,N分別是AB,BC中點(diǎn)
BQ
QD
=
1
3
;
D1P
PD
=
BQ
QD
=
1
3
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

圓O所在平面為α,AB為直徑,C是圓周上一點(diǎn),且PA⊥AC,PA⊥AB,圖中直角三角形有______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

底面是平行四邊形的四棱錐P-ABCD,E、F、G分別為AB、PC、DC的中點(diǎn),
(1)求證:EF面PAD;
(2)若PA⊥平面ABCD,求證:面EFG⊥面ABCD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,四棱錐P-ABCD中,ABCD是矩形,三角形PAD為等腰直角三角形,∠APD=90°,面APD⊥面ABCD,AB=1,AD=2,E,F(xiàn)分別為PC和BD的中點(diǎn).
(1)求證:EF平面PAD;
(2)證明:平面PAD⊥平面PDC;
(3)求四棱錐P-ABCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,四邊形ABCD是正方形,PB⊥平面ABCD,MA⊥平面ABCD,PB=AB=2MA.求證:
(1)平面AMD平面BPC;
(2)平面PMD⊥平面PBD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在如圖所示的四棱錐P-ABCD中,已知PA⊥平面ABCD,ABDC,∠DAB=90°,PA=AD=DC=1,AB=2,M為PB的中點(diǎn).
(1)求證:平面PAC⊥平面PBC;
(2)求二面角A-PB-C的平面角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

正方形ABCD的邊長(zhǎng)為1,分別取BC、CD的中點(diǎn)E、F,連接AE、EF、AF,以AE、EF、FA為折痕,折疊這個(gè)正方形,使B、C、D重合為一點(diǎn)P,得到一個(gè)四面體P-AEF,
(1)求證:AP⊥EF;
(2)求證:平面APE⊥平面APF.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知點(diǎn)B與點(diǎn)A(1,2,3)關(guān)于M(0,-1,2)對(duì)稱,則點(diǎn)B的坐標(biāo)是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

點(diǎn)A(1,1)到直線xcosθ+ysinθ-2=0的距離的最大值是(  )
A.2B.2-
C.2+D.4

查看答案和解析>>

同步練習(xí)冊(cè)答案