已知函數(shù)
,
.
(Ⅰ)若
與
在
處相切,試求
的表達(dá)式;
(Ⅱ)若
在
上是減函數(shù),求實數(shù)
的取值范圍;
(Ⅲ)證明不等式:
.
(Ⅰ)
;(Ⅱ)
.(Ⅲ)見解析
試題分析:(Ⅰ)求導(dǎo)數(shù),利用
與
在
處相切,可求
的表達(dá)式;(Ⅱ)
在
上是減函數(shù),可得導(dǎo)函數(shù)小于等于
在
上恒成立,分離參數(shù),利用基本不等式,可求實數(shù)
的取值范圍;(Ⅲ)當(dāng)x≥2時,證明
,當(dāng)x>1時,證明
,利用疊加法,即可得到結(jié)論.
試題解析:解:(Ⅰ)由已知 且
得:
2分
又
3分
(Ⅱ)
在
上是減函數(shù),
在
上恒成立. 5分
即
在
上恒成立,由
,
得
6分
(Ⅲ)由(Ⅰ)可得:當(dāng)
時:
得:
8分
當(dāng)
時:
當(dāng)
時:
當(dāng)
時:
當(dāng)
時:
,
上述不等式相加得:
即:
① 9分
由(Ⅱ)可得:當(dāng)
時:
在
上是減函數(shù)
當(dāng)
時:
即
所以
從而得到:
11分
當(dāng)
時:
當(dāng)
時:
當(dāng)
時:
當(dāng)
時:
,
上述不等式相加得:
即
②
綜上:
(
) 12分
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
設(shè)函數(shù)
,若
時,
有極小值
,
(1)求實數(shù)
的取值;
(2)若數(shù)列
中,
,求證:數(shù)列
的前
項和
;
(3)設(shè)函數(shù)
,若
有極值且極值為
,則
與
是否具有確定的大小關(guān)系?證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知函數(shù)
(1)當(dāng)
時,求函數(shù)
的單調(diào)區(qū)間;
(2)當(dāng)函數(shù)自變量的取值區(qū)間與對應(yīng)函數(shù)值的取值區(qū)間相同時,這樣的區(qū)間稱為函數(shù)的保值區(qū)間.
,試問函數(shù)
在
上是否存在保值區(qū)間?若存在,請求出一個保值區(qū)間;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
設(shè)
f(
x)=
,其中
a為正實數(shù).
①當(dāng)
a=
時,求
f(
x)的極值點;②若
f(
x)為R上的單調(diào)函數(shù),求
a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知函數(shù)y=f(x)的圖象是下列四個圖象之一,且其導(dǎo)函數(shù)y=f′(x)的圖象如圖所示,則該函數(shù)的圖象是 ( ).
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
函數(shù)
f(
x)=
x2-ln
x的單調(diào)遞減區(qū)間為 ( ).
A.(-1,1] | B.(0,1] |
C.[1,+∞) | D.(0,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
函數(shù)
的單調(diào)遞增區(qū)間為( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
已知
,函數(shù)
在區(qū)間
單調(diào)遞減,則
的最大值為
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
已知函數(shù)
在區(qū)間
上是增函數(shù),則實數(shù)
的取值范圍是
.
查看答案和解析>>