精英家教網 > 高中數學 > 題目詳情

【題目】在如圖所示的幾何體中,四邊形是矩形, 平面 的中點.

(1)求證: 平面

(2)若, ,求證平面平面.

【答案】(1)詳見解析;(2) 詳見解析.

【解析】試題分析:(1)取AB的中點F,連結EF,A1F.則可通過證明平面A1EF∥平面BB1C1C得出A1E∥平面BB1C1C;(2)連結CF,則可得出CFA1C1,通過證明CF⊥平面ABB1A1得到CFA1B.即A1C1A1B,利用勾股定理的逆定理得出AA1A1B,于是A1B⊥平面AA1C1,從而平面BEA1⊥平面AA1C1

試題解析:

(1)證明:取的中點,連接,∵,∴,∵,∴.∵的中位線,∴,∵,∴平面平面,

平面,∴平面.

(2)解:連接,∵,∴,∵是矩形,∴,∴四邊形是平行四邊形,則.∵, ,∴平面,則,由(1)得是等腰三角形,又四邊形是正方形,∴,即,∴平面,則 平面.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知橢圓 的離心率為,且過點.

(Ⅰ)求橢圓的方程;

(Ⅱ)過點任作一條直線與橢圓相交于兩點,試問在軸上是否存在定點,使得直線與直線關于軸對稱?若存在,求出點的坐標;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】觀察下列等式:13+23=32 , 13+23+33=62 , 13+23+33+43=102 , …,根據上述規(guī)律,得到一般結論是

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知O為△ABC內一點,且 ,若B,O,D三點共線,則t的值為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知, ,其中是自然常數, .

(1)當時,求的極值,并證明恒成立;

(2)是否存在實數,使的最小值為 ?若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某中學舉行了一次“環(huán)保只知識競賽”,全校學生參加了這次競賽.為了了解本次競賽成績情況,從中抽取了部分學生的成績(得分取正整數,滿分為 分)作為樣本進行統(tǒng)計.請根據下面尚未完成并有局部污損的頻率分布表(如圖所示),解決下列問題.

(1)求出的值;

(2)在選取的樣本中,從競賽成績是 分以上(含 分)的同學中隨機抽取 名同學到廣場參加環(huán)保只是的志愿宣傳活動.

1)求所抽取的 名同學中至少有 名同學來自第 組的概率;

2)求所抽取的 名同學來自同一組的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖所示是一樣本的頻率分布直方圖,則由圖形中的數據,可以估計眾數與中位數分別是(
A.12.5 12.5
B.12.5 13
C.13 12.5
D.13 13

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】下列函數中,既是偶函數,又在區(qū)間上單調遞減的是

A. B.

C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知雙曲線 (a>0,b>0)的中心為O,左焦點為F,P是雙曲線上的一點 =0且4 =3 ,則該雙曲線的離心率是( )
A.
B.
C.
+
D.

查看答案和解析>>

同步練習冊答案