【題目】如圖,四棱柱中,底面,底面是梯形,,.

(1)求證:平面平面

(2)在線段上是否存在一點(diǎn),使平面,若存在,請(qǐng)確定點(diǎn)的位置;若不存在,請(qǐng)說(shuō)明理由.

【答案】(1)證明見解析;(2)存在點(diǎn)的中點(diǎn),使平面.

【解析】試題分析:(1)先由棱柱的性質(zhì)證明再根據(jù)勾股定理可得,從而可得平面,進(jìn)而根據(jù)面面垂直的判定定理即可證明平面平面;(2)存在點(diǎn)的中點(diǎn),使平面,先根據(jù)中位線定理及平行四邊形的性質(zhì)可得根據(jù)線面平行的判定定理進(jìn)行證明可得到結(jié)論.

試題解析:(1)因?yàn)?/span>底面, 所以底面,因?yàn)?/span>底面,

所以因?yàn)榈酌?/span>是梯形,,

因?yàn)?/span>,所以,所以,

所以在中,所以所以

又因?yàn)?/span>所以平面因?yàn)?/span>平面,所以平面平面

(2)存在點(diǎn)的中點(diǎn),使平面.

證明如下:取線段的中點(diǎn)為點(diǎn),連結(jié),所以,且因?yàn)?/span>,所以,且所以四邊形是平行四邊形.所以

又因?yàn)?/span>平面平面,所以平面

【方法點(diǎn)晴】本題主要考查線面平行的判定定理、線面垂直與面面垂直的判定,屬于難題.證明線面平行的常用方法:①利用線面平行的判定定理,使用這個(gè)定理的關(guān)鍵是設(shè)法在平面內(nèi)找到一條與已知直線平行的直線,可利用幾何體的特征,合理利用中位線定理、線面平行的性質(zhì)或者構(gòu)造平行四邊形、尋找比例式證明兩直線平行.②利用面面平行的性質(zhì),即兩平面平行,在其中一平面內(nèi)的直線平行于另一平面.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在某港口處獲悉,其正東方向距離20n mile的處有一艘漁船遇險(xiǎn)等待營(yíng)救,此時(shí)救援船在港口的南偏西30°距港口10n mile的C處,救援船接到救援命令立即從C處沿直線前往B處營(yíng)救漁船.

(1)求接到救援命令時(shí)救援船距漁船的距離;

(2)試問救援船在C處應(yīng)朝北偏東多少度的方向沿直線前往B處救援?(已知

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一次抽樣調(diào)查中測(cè)得樣本的6組數(shù)據(jù),得到一個(gè)變量關(guān)于的回歸方程模型,其對(duì)應(yīng)的數(shù)值如下表:

2

3

4

5

6

7

(1)請(qǐng)用相關(guān)系數(shù)加以說(shuō)明之間存在線性相關(guān)關(guān)系(當(dāng)時(shí),說(shuō)明之間具有線性相關(guān)關(guān)系);

(2)根據(jù)(1)的判斷結(jié)果,建立關(guān)于的回歸方程并預(yù)測(cè)當(dāng)時(shí),對(duì)應(yīng)的值為多少(精確到).

附參考公式:回歸方程中斜率和截距的最小二乘法估計(jì)公式分別為:

,,相關(guān)系數(shù)公式為:.

參考數(shù)據(jù):

,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】方程 在(0,2π)內(nèi)有相異兩解α,β,則α+β=

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在下列四個(gè)正方體中,為正方體的兩個(gè)頂點(diǎn),為所在棱的中點(diǎn),則在這四個(gè)正方體中,直接與平面不平行的是(

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在四棱錐中, 平面,底面為矩形, ,該四棱錐的外接球的體積為,則到平面的距離為(

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)為實(shí)數(shù))的圖像在點(diǎn)處的切線方程為.

(1)求實(shí)數(shù)的值及函數(shù)的單調(diào)區(qū)間;

(2)設(shè)函數(shù),證明時(shí), .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】傳承傳統(tǒng)文化再掀熱潮,央視科教頻道以詩(shī)詞知識(shí)競(jìng)賽為主的《中國(guó)詩(shī)詞大會(huì)》火爆熒屏。將中學(xué)組和大學(xué)組的參賽選手按成績(jī)分為優(yōu)秀、良好、一般三個(gè)等級(jí),隨即從中抽取了100名選手進(jìn)行調(diào)查,下面是根據(jù)調(diào)查結(jié)果繪制的選手等級(jí)人數(shù)的條形圖.

(Ⅰ)若將一般等級(jí)和良好等級(jí)合稱為合格等級(jí),根據(jù)已知條件完成下面的列聯(lián)表,并據(jù)此資料你是否有95%的把握認(rèn)為選手成績(jī)“優(yōu)秀”與文化程度有關(guān)?

注:其中.

(Ⅱ)在優(yōu)秀等級(jí)的選手中取6名,依次編號(hào)為1,2,3,4,5,6,在良好等級(jí)的選手中取6名,依次編號(hào)為1,2,3,4,5,6,在選出的6名優(yōu)秀等級(jí)的選手中任取一名,記其編號(hào)為,在選出的6名良好等級(jí)的選手中任取一名,記其編號(hào)為,求使得方程組有唯一一組實(shí)數(shù)解的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}滿足an+1= an+t,a1= (t為常數(shù),且t≠ ).
(1)證明:{an﹣2t}為等比數(shù)列;
(2)當(dāng)t=﹣ 時(shí),求數(shù)列{an}的前幾項(xiàng)和最大?
(3)當(dāng)t=0時(shí),設(shè)cn=4an+1,數(shù)列{cn}的前n項(xiàng)和為Tn , 若不等式 ≥2n﹣7對(duì)任意的n∈N*恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案