(本題滿分16分)本題共有3個小題,第1小題滿分4分,第2小題滿分6分、第3小題滿分6分.

已知的頂點在橢圓上,在直線上,

(1)求邊中點的軌跡方程;

(2)當邊通過坐標原點時,求的面積;

(3)當,且斜邊的長最大時,求所在直線的方程.

 

 

【答案】

(1)(2)

(3)

【解析】(1)設(shè)所在直線的方程為

.                 (2分)

因為在橢圓上,所以

設(shè)兩點坐標分別為,中點為

,

所以中點軌跡方程為           (4分)

(2),且邊通過點,故所在直線的方程為

此時,由(1)可得,所以   (6分)

又因為邊上的高等于原點到直線的距離,所以       (8分)

.                                       (10分)

(3)由(1)得,

所以.                          (12分)

又因為的長等于點到直線的距離,即.  (14分)

所以

所以當時,邊最長,(這時

此時所在直線的方程為.                          (16分)

 

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:2011屆陜西省師大附中、西工大附中高三第五次聯(lián)考理數(shù) 題型:解答題

.三、解答題:本大題共6小題,共75分. 解答應(yīng)寫出文字說明、證明過程或演算步驟.
16. (本題滿分12分)
已知函數(shù)為偶函數(shù), 且
(1)求的值;
(2)若為三角形的一個內(nèi)角,求滿足的值.

查看答案和解析>>

科目:高中數(shù)學 來源:2014屆江蘇大豐新豐中學高二上期中考試文數(shù)學試卷(解析版) 題型:解答題

(本小題滿分16分)     本題請注意換算單位

某開發(fā)商用9000萬元在市區(qū)購買一塊土地建一幢寫字樓,規(guī)劃要求寫字樓每層建筑面積為2000平方米。已知該寫字樓第一層的建筑費用為每平方米4000元,從第二層開始,每一層的建筑費用比其下面一層每平方米增加100元。

(1)若該寫字樓共x層,總開發(fā)費用為y萬元,求函數(shù)y=f(x)的表達式;

(總開發(fā)費用=總建筑費用+購地費用)

(2)要使整幢寫字樓每平方米開發(fā)費用最低,該寫字樓應(yīng)建為多少層?

 

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年陜西省、西工大附中高三第五次聯(lián)考理數(shù) 題型:解答題

三、解答題:本大題共6小題,共75分. 解答應(yīng)寫出文字說明、證明過程或演算步驟.

16. (本題滿分12分)

已知函數(shù)為偶函數(shù), 且

(1)求的值;

(2)若為三角形的一個內(nèi)角,求滿足的值.

 

 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本小題滿分16分)(本題中必要時可使用公式:) 

 設(shè)是各項均為正數(shù)的無窮項等差數(shù)列.

(Ⅰ)記,已知

 ,試求此等差數(shù)列的首項a1及公差d;

(Ⅱ)若的首項a1及公差d都是正整數(shù),問在數(shù)列中是否包含一個非常數(shù)列 

 的無窮項等比數(shù)列?若存在,請寫出的構(gòu)造過程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本小題滿分16分)(本題中必要時可使用公式:) 

 設(shè)是各項均為正數(shù)的無窮項等差數(shù)列.

(Ⅰ)記,已知

 ,試求此等差數(shù)列的首項a1及公差d;

(Ⅱ)若的首項a1及公差d都是正整數(shù),問在數(shù)列中是否包含一個非常數(shù)列 

 的無窮項等比數(shù)列?若存在,請寫出的構(gòu)造過程;若不存在,說明理由.

查看答案和解析>>

同步練習冊答案