精英家教網(wǎng)在△ABC中,已知B=45°,D是BC邊上的一點(diǎn),AD=10,AC=14,DC=6,求AB的長(zhǎng).
分析:先根據(jù)余弦定理求出∠ADC的值,即可得到∠ADB的值,最后根據(jù)正弦定理可得答案.
解答:解:在△ADC中,AD=10,AC=14,DC=6,
由余弦定理得cos∠ADC=
AD2+DC2-AC2
2AD•DC
=
100+36-196
2×10×6
=-
1
2
,
∴∠ADC=120°,∠ADB=60°
在△ABD中,AD=10,∠B=45°,∠ADB=60°,
由正弦定理得
AB
sin∠ADB
=
AD
sinB

∴AB=
AD•sin∠ADB
sinB
=
10sin60°
sin45°
=
10×
3
2
2
2
=5
6
點(diǎn)評(píng):本題主要考查余弦定理和正弦定理的應(yīng)用.屬基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,已知b=50
3
,c=150,B=30°,則邊長(zhǎng)a=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)在△ABC中,已知B=45°,D是BC上一點(diǎn),AD=5,AC=7,DC=3,求AB的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,已知b=6,c=5
3
,A=30°
,則a=
21
21

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,已知B=60°,C=45°,c=3
2
,則b=
3
3
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在△ABC中,已知B=
π
3
,AC=4
3
,D為BC邊上一點(diǎn).
(I)若AD=2,S△DAC=2
3
,求DC的長(zhǎng);
(Ⅱ)若AB=AD,試求△ADC的周長(zhǎng)的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案