【題目】如圖,矩形所在的平面和平面互相垂直,等腰梯形中,,,,分別為,的中點,為底面的重心.

1)求證:平面;

2)求直線與平面所成角的正弦值.

【答案】1)證明詳見解析;(2.

【解析】

1)連,則中點,連,根據(jù)已知可證,,進而證明平面平面,即可證明結(jié)論;

2)矩形所在的平面和平面互相垂直,,可證平面,可得,在中,由余弦定理求出,推斷出,得到,可證明平面,可知為直線與平面所成角的角,解直角三角形,即可求出結(jié)論.

1)連,則中點,連,

的中點,平面,

平面平面,

分別為的中點,平面,

平面平面,

平面

平面平面平面,

平面;

(2)平面平面,平面平面

,平面平面

,又,

由余弦定理可得,

平面,所以為直線與平面所成角的角,

中,,

所以直線與平面所成角的正弦值為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),證明:

1在區(qū)間存在唯一極大值點;

2有且僅有2個零點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某人準(zhǔn)備投資1200萬元辦一所中學(xué),為了考慮社會效益和經(jīng)濟效益,對該地區(qū)教育市場進行調(diào)查,得出一組數(shù)據(jù),列表如下(以班級為單位).

市場調(diào)查表:

班級學(xué)生數(shù)

配備教師數(shù)

硬件建設(shè)費(萬元)

教師年薪(萬元)

初中

50

2.0

28

1.2

高中

40

2.5

58

1.6

根據(jù)物價部門的有關(guān)規(guī)定:初中是義務(wù)教育階段,收費標(biāo)準(zhǔn)適當(dāng)控制,預(yù)計除書本費、辦公費外,初中每人每年可收取600.高中每人每年可收取1500.因生源和環(huán)境等條件限制,辦學(xué)規(guī)模以2030個班為宜(含20個班與30個),教師實行聘任制.初、高中教育周期均為三年,設(shè)初中編制為個班,高中編制為個班,請你合理地安排招生計劃,使年利潤最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“割圓術(shù)”是劉徽最突出的數(shù)學(xué)成就之一,他在《九章算術(shù)注》中提出割圓術(shù),并作為計算圓的周長,面積已經(jīng)圓周率的基礎(chǔ),劉徽把圓內(nèi)接正多邊形的面積一直算到了正3072邊形,并由此而求得了圓周率為3.1415和3.1416這兩個近似數(shù)值,這個結(jié)果是當(dāng)時世界上圓周率計算的最精確數(shù)據(jù).如圖,當(dāng)分割到圓內(nèi)接正六邊形時,某同學(xué)利用計算機隨機模擬法向圓內(nèi)隨機投擲點,計算得出該點落在正六邊形內(nèi)的頻率為0.8269,那么通過該實驗計算出來的圓周率近似值為(參考數(shù)據(jù):

A. 3.1419B. 3.1417C. 3.1415D. 3.1413

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線軸,軸分別交于,,線段的中垂線與拋物線有兩個不同的交點、

1)求的取值范圍;

2)是否存在,使得,,四點共圓,若存在,請求出的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線和圓,傾斜角為45°的直線過拋物線的焦點,且與圓相切.

1)求的值;

2)動點在拋物線的準(zhǔn)線上,動點上,若點處的切線軸于點,設(shè).求證點在定直線上,并求該定直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓1(a>b>0)的左右焦點分別為F1F2,左右頂點分別為AB,上頂點為T,且△TF1F2為等邊三角形.

1)求此橢圓的離心率e;

2)若直線y=kx+m(k>0)與橢圓交與CD兩點(Dx軸上方),且與線段F1F2及橢圓短軸分別交于點MN(其中MN不重合),且|CM|=|DN|.

①求k的值;

②設(shè)ADBC的斜率分別為k1,k2,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,平面平面,

1)證明:平面;

2)求二面角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線C1的參數(shù)方程為為參數(shù)),以坐標(biāo)原點O為極點,x軸的正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為,曲線C2的極坐標(biāo)方程為ρ2sinθ.

1)探究直線l與曲線C2的位置關(guān)系,并說明理由;

2)若曲線C3的極坐標(biāo)方程為,且曲線C3與曲線C1、C2分別交于MN兩點,求|OM|2|ON|2的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案