【題目】如圖所示,在四棱錐中,底面是且邊長為的菱形,側(cè)面為正三角形,其所在平面垂直于底面.
(1)若為邊的中點,求證:平面.
(2)求證:.
(3)若為邊的中點,能否在上找出一點,使平面 平面?
科目:高中數(shù)學 來源: 題型:
【題目】已知點為拋物線的焦點,點、在拋物線上,且、、三點共線.若圓的直徑為.
(1)求拋物線的標準方程;
(2)過點的直線與拋物線交于點,,分別過、兩點作拋物線的切線,,證明直線,的交點在定直線上,并求出該直線.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】中學為研究學生的身體素質(zhì)與體育鍛煉時間的關(guān)系,對該校200名高三學生平均每天體育鍛煉時間進行調(diào)查,如表:(平均每天鍛煉的時間單位:分鐘)
平均每天鍛煉的時間/分鐘 | ||||||
總?cè)藬?shù) | 20 | 36 | 44 | 50 | 40 | 10 |
將學生日均體育鍛煉時間在的學生評價為“鍛煉達標”.
(1)請根據(jù)上述表格中的統(tǒng)計數(shù)據(jù)填寫下面的列聯(lián)表;
鍛煉不達標 | 鍛煉達標 | 合計 | |
男 | |||
女 | 20 | 110 | |
合計 |
并通過計算判斷,是否能在犯錯誤的概率不超過0.025的前提下認為“鍛煉達標”與性別有關(guān)?
(2)在“鍛煉達標”的學生中,按男女用分層抽樣方法抽出10人,進行體育鍛煉體會交流,
(i)求這10人中,男生、女生各有多少人?
(ii)從參加體會交流的10人中,隨機選出2人作重點發(fā)言,記這2人中女生的人數(shù)為,求的分布列和數(shù)學期望.
參考公式:,其中.
臨界值表
0.10 | 0.05 | 0.025 | 0.010 | |
2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】正三棱柱(底面是正三角形,側(cè)棱垂直底面)的各條棱長均相等,為的中點,、分別是、上的動點(含端點),且滿足.當、運動時,下列結(jié)論中正確的個數(shù)是( )
①平面平面;
②三棱錐的體積為定值;
③可能為直角三角形;
④平面與平面所成的銳二面角范圍為.
A.1B.2C.3D.4
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖1,在直角梯形ABCD中,∠ADC=90°,CD∥AB,AB=4,AD=CD=2.將△ADC沿AC折起,使平面ADC⊥平面ABC,得到幾何體D﹣ABC,如圖2所示.
(Ⅰ)求證:BC⊥平面ACD;
(Ⅱ)求幾何體D﹣ABC的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),直線為曲線的切線(為自然對數(shù)的底數(shù)).
(1)求實數(shù)的值;
(2)用表示中的最小值,設(shè)函數(shù),若函數(shù)
為增函數(shù),求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,平面四邊形ABCD中,E,F是AD,BD中點,,,將沿對角線BD折起至,使平面平面BCD,則四面體中,下列結(jié)論不正確的是( )
A.平面
B.異面直線CD與所成的角為
C.異面直線EF與所成的角為
D.直線與平面BCD所成的角為
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】張強同學進行三次定點投籃測試,已知第一次投籃命中的概率為,第二次投籃命中的概率為,前兩次投籃是否命中相互之間沒有影響.第三次投籃受到前兩次結(jié)果的影響,如果前兩次投籃至少命中一次,則第三次投籃命中的概率為,否則為.
(1)求張強同學三次投籃至少命中一次的概率;
(2)記張強同學三次投籃命中的次數(shù)為隨機變量,求的概率分布及數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)(為自然對數(shù)的底數(shù)),為的導函數(shù),且.
(1)求實數(shù)的值;
(2)若函數(shù)在處的切線經(jīng)過點,求函數(shù)的極值;
(3)若關(guān)于的不等式對于任意的恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com