精英家教網 > 高中數學 > 題目詳情
如圖,已知四邊形ABCD是平行四邊形,點P是平面ABCD外的一點,則在四棱錐P-ABCD中,M是PC的中點,在DM上取一點G,過G和AP作平面交平面BDM于GH.求證:AP∥GH.
【答案】分析:連接AC,交BD于O,由三角形的中位線的性質可得MO∥PA,可得PA∥平面BDM,再由兩個平面平行的性質定理證得
AP∥GH.
解答:證明:連接AC,交BD于O,連接MO.因為四邊形ABCD是平行四邊形,
所以 O是AC的中點,又因為M是PC的中點,所以MO∥PA.
又因為 MO?平面BDM,PA?平面BDM,
所以,PA∥平面BDM.又因為經過PA與點G的平面交平面BDM于GH,
所以,AP∥GH.
點評:本題考查證明線線平行的方法,兩個平面平行的性質定理的應用,證明PA∥平面BDM,是解題的關鍵.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

如圖,已知四邊形ABCD為直角梯形,∠ABC=90°,AD∥BC,AD=2,AB=BC=1,沿AC將△ABC折起,使點B到點P的位置,且平面PAC⊥平面ACD.
(I)證明:DC⊥平面APC;
(II)求棱錐A-PBC的高.

查看答案和解析>>

科目:高中數學 來源: 題型:

(幾何證明選講選做題)如圖,已知四邊形ABCD內接于⊙O,且AB為⊙O的直徑,直線MN切
⊙O于D,∠MDA=45°,則∠DCB=
135°
135°

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖:已知四邊形ABCD是正方形,PD⊥平面ABCD,PD=AD,點E,F分別是線段PB,AD的中點
(1)求證:FE∥平面PCD;
(2)求異面直線DE與AB所成的角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,已知四邊形ABCD為直角梯形,∠ABC=90°,AD∥BC,AD=2,AB=BC=1,沿AC將△ABC折起,使點B到點P的位置,且平面PAC⊥平面ACD.
(I)證明:DC⊥平面APC;
(II)求二面角B-AP-D的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,已知四邊形ABCD是菱形,PA⊥平面ABCD,PA=AB=BD=2,AC與BD交于E點,F是PD的中點.
(1)求證:PB∥平面AFC;
(2)求多面體PABCF的體積.

查看答案和解析>>

同步練習冊答案