設(shè)F1、F2分別為橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點(diǎn).
(Ⅰ)若橢圓上的點(diǎn)A(1,
3
2
)到點(diǎn)F1、F2的距離之和等于4,求橢圓C的方程;
(Ⅱ)設(shè)點(diǎn)P是(Ⅰ)中所得橢圓C上的動(dòng)點(diǎn),求線段F1P的中點(diǎn)M的軌跡方程.
(Ⅰ)由橢圓上的點(diǎn)A到點(diǎn)F1、F2的距離之和是4,可得2a=4,即a=2.(1分)
又點(diǎn)A(1,
3
2
)在橢圓上,因此
1
22
+
(
3
2
)
2
b2
=1,解得b2=3,于是c2=1…(2分)
所以橢圓C的方程為
x2
4
+
y2
3
=1…(3分)
(Ⅱ)設(shè)橢圓C上的動(dòng)點(diǎn)P的坐標(biāo)為(x1,y1),點(diǎn)M的坐標(biāo)為(x,y).
由(Ⅰ)知,點(diǎn)F1的坐標(biāo)為(-1,0),則x=
-1+x1
2
,y=
y1
2
,即x1=2x+1y1=2y…(5分)
因此
(2x+1)2
4
+
(2y)2
3
=1,即(x+
1
2
)2+
4y2
3
=1
為所求的軌跡方程…(6分)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的離心率e=
3
2
,A、B是橢圓的左、右頂點(diǎn),P是橢圓上不同于A、B的一點(diǎn),直線PA、PB斜傾角分別為α、β,則
cos(α-β)
cos(α+β)
=______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,橢圓C1
x2
a2
+
y2
b2
=1(a>b,b>0)和圓C2:x2+y2=b2,已知圓C2將橢圓Cl的長(zhǎng)軸三等分,且圓C2的面積為π.橢圓Cl的下頂點(diǎn)為E,過坐標(biāo)原點(diǎn)O且與坐標(biāo)軸不重合的任意直線l與圓C2相交于點(diǎn)A、B,直線EA、EB與橢圓C1的另一個(gè)交點(diǎn)分別是點(diǎn)P、M.
(Ⅰ)求橢圓C1的方程;
(Ⅱ)(i)設(shè)PM的斜率為t,直線l斜率為K1,求
K1
t
的值;
(ii)求△EPM面積最大時(shí)直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知平面內(nèi)一動(dòng)點(diǎn)P到點(diǎn)F(2,0)的距離比點(diǎn)P到y(tǒng)軸的距離大2,
(Ⅰ)求動(dòng)點(diǎn)P的軌跡C的方程;
(Ⅱ)過點(diǎn)F且斜率為2
2
的直線交軌跡C于A(x1,y1),B(x2,y2)(x1<x2)兩點(diǎn),P(x3,y3)(x3≥0)為軌跡C上一點(diǎn),若
OP
=
OA
OB
,求λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

拋物線C:y2=2px(p>0)的焦點(diǎn)為F,拋物線C上點(diǎn)M的橫坐標(biāo)為2,且|MF|=3.
(1)求拋物線C的方程;
(2)過焦點(diǎn)F作兩條相互垂直的直線,分別與拋物線C交于M、N和P、Q四點(diǎn),求四邊形MPNQ面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知圓C:x2+y2-2x+4y-4=0,
(Ⅰ)若過定點(diǎn)(-2,0)的直線l與圓C相切,求直線l的方程;
(Ⅱ)若過定點(diǎn)(-1,0)且傾斜角為
π
6
的直線l與圓C相交于A,B兩點(diǎn),求線段AB的中點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓C1的方程為
x2
4
+y2=1,雙曲線C2的左、右焦點(diǎn)分別為C1的左、右頂點(diǎn),而C2的左、右頂點(diǎn)分別是C1的左、右焦點(diǎn).
(Ⅰ)求雙曲線C2的方程;
(Ⅱ)若直線l:y=kx+
2
與橢圓C1及雙曲線C2都恒有兩個(gè)不同的交點(diǎn),且l與C2的兩個(gè)交點(diǎn)A和B滿足
OA
OB
<6(其中O為原點(diǎn)),求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

線段PQ是橢圓
x2
4
+
y2
3
=1
過M(1,0)的一動(dòng)弦,且直線PQ與直線x=4交于點(diǎn)S,則
|SM|
|SP|
+
|SM|
|SQ|
=______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,橢圓
x2
a2
+
y2
b
=1(a>b>0)與過點(diǎn)A(2,0)B(0,1)的直線有且只有一個(gè)公共點(diǎn)T,且橢圓的離心率e=
3
2

(Ⅰ)求橢圓方程;
(Ⅱ)設(shè)F1、F2分別為橢圓的左、右焦點(diǎn),M為線段AF1的中點(diǎn),求證:∠ATM=∠AF1T.

查看答案和解析>>

同步練習(xí)冊(cè)答案