復(fù)數(shù)z=
1
1+i
+
1
1-i
,則z的共軛復(fù)數(shù)為( 。
A、iB、-iC、1D、-1
考點(diǎn):復(fù)數(shù)代數(shù)形式的乘除運(yùn)算
專題:數(shù)系的擴(kuò)充和復(fù)數(shù)
分析:直接利用復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡(jiǎn),然后利用共軛復(fù)數(shù)的概念得答案.
解答: 解:z=
1
1+i
+
1
1-i
=
1-i
(1+i)(1-i)
+
1+i
(1-i)(1+i)

=
1
2
-
i
2
+
1
2
+
i
2
=1

.
z
=1

故選:C.
點(diǎn)評(píng):本題考查了復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查了共軛復(fù)數(shù)的概念,是基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2-2(a+1)x+2alnx(a>0).
(Ⅰ)當(dāng)a=1時(shí),求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(Ⅱ)求f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的前n項(xiàng)和為Sn,a1=-1,且 4an+1+2Sn=-1(n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)數(shù)列{a2n}的前n項(xiàng)和為Tn,數(shù)列{a2n-1}的各項(xiàng)和為S,若不等式Tn<k•S對(duì)于一切自然數(shù)n都成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)一個(gè)作直線運(yùn)動(dòng)的質(zhì)點(diǎn)的運(yùn)動(dòng)過(guò)程觀測(cè)了8次,第i次觀測(cè)得到的數(shù)據(jù)為
ai,具體如表所示:
i12345678
ai4041434344464748
在對(duì)上述統(tǒng)計(jì)數(shù)據(jù)的分析中,一部分計(jì)算見(jiàn)如圖所示的算法流程  圖其中
.
a
是這8個(gè)數(shù)據(jù)的平均數(shù).,則輸出的S的值是( 。
A、5B、7C、40D、56

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義在R上的奇函數(shù)y是周期函數(shù),最小正周期是4.當(dāng)x∈(0,1]時(shí),f(x)=x
1
2
,則f(11.5)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知x、y均為正數(shù),
2
x
+
8
y
=1,則xy有( 。
A、最大值64
B、最大值
1
64
C、最小值64
D、最小值
1
64

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={x|x2-3x+2=0},B={x|x2+2(a+1)x+(a2-5)=0},若A∩B=B,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)四面體的各條棱長(zhǎng)都為1,若該四面體的各個(gè)頂點(diǎn)都在同一個(gè)球面上,求該球的表面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)拋物線C:y2=4x的焦點(diǎn)為F,直線L過(guò)F且與C交于A、B兩點(diǎn),若|AF|=3|BF|,則L的方程為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案