某飲料公司招聘了一名員工,現(xiàn)對(duì)其進(jìn)行一項(xiàng)測(cè)試,以便確定工資級(jí)別.公司準(zhǔn)備了兩種不同的飲料共8杯,其顏色完全相同,并且其中4杯為A飲料,另外4杯為B飲料,公司要求此員工一一品嘗后,從8杯飲料中選出4杯A飲料,若4杯都選對(duì),則月工資定為3500元;若4杯選對(duì)3杯,則月工資定為2 800元,否則月工資定為2100元,令X表示此人選對(duì)A飲料的杯數(shù),假設(shè)此人對(duì)A和B兩種飲料沒(méi)有鑒別能力.
(1)求X的分布列:
(2)求此員工月工資的期望.

(1) 分布列為

X
0
1
2
3
4
P





(2) 2280元

解析解:(1)X的所有可能取值為0,1,2,3,4,
則P(x=i)= (i=0,1,2,3,4),所以所求的分布列為

X
0
1
2
3
4
P





(2)設(shè)Y表示該員工的月工資,則Y的所有可能取值為3500,2800,2100,相對(duì)的概率分別為,,
所以E(Y)=3500×+2800×+2100×=2280(元).
所以此員工工資的期望為2280元.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

一個(gè)均勻的正四面體面上分別涂有1,2,3,4四個(gè)數(shù)字,現(xiàn)隨機(jī)投擲兩次,正四面體面朝下的數(shù)字分別為
(1)記,求的概率;
(2)若方程至少有一根,就稱該方程為“漂亮方程”,求方程為“漂亮方程”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

某射擊小組有甲、乙兩名射手,甲的命中率為P1,乙的命中率為P2,在射擊比賽活動(dòng)中每人射擊兩發(fā)子彈則完成一次檢測(cè),在一次檢測(cè)中,若兩人命中數(shù)相等且都不少于一發(fā),則稱該射擊小組為“先進(jìn)和諧組”.
(1)若P2,求該小組在一次檢測(cè)中榮獲“先進(jìn)和諧組”的概率;
(2)計(jì)劃在2013年每月進(jìn)行1次檢測(cè),設(shè)這12次檢測(cè)中該小組獲得“先進(jìn)和諧組”的次數(shù)為ξ,如果E(ξ)≥5,求P2的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

某校高三(1)班共有名學(xué)生,他們每天自主學(xué)習(xí)的時(shí)間全部在分鐘到分鐘之間,按他們學(xué)習(xí)時(shí)間的長(zhǎng)短分個(gè)組統(tǒng)計(jì),得到如下頻率分布表:

組別
 
分組
 
頻數(shù)
 
頻率
 
第一組
 

 
 
 

 
第二組
 

 

 

 
第三組
 

 

 

 
第四組
 

 

 

 
第五組
 

 
 
 

 
(1)求分布表中,的值;
(2)王老師為完成一項(xiàng)研究,按學(xué)習(xí)時(shí)間用分層抽樣的方法從這名學(xué)生中抽取名進(jìn)行研究,問(wèn)應(yīng)抽取多少名第一組的學(xué)生?
(3)已知第一組學(xué)生中男、女生人數(shù)相同,在(2)的條件下抽取的第一組學(xué)生中,既有男生又有女生的概率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

某市公租房的房源位于三個(gè)片區(qū),設(shè)每位申請(qǐng)人只申請(qǐng)其中一個(gè)片區(qū)的房源,且申請(qǐng)其中任一個(gè)片區(qū)的房源是等可能的,求該市的任4位申請(qǐng)人中:
(1)恰有2人申請(qǐng)片區(qū)房源的概率;
(2)申請(qǐng)的房源所在片區(qū)的個(gè)數(shù)的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

圖是某市日至日的空氣質(zhì)量指數(shù)趨勢(shì)圖,空氣質(zhì)量指數(shù)()小于表示空氣質(zhì)量?jī)?yōu)良,空氣質(zhì)量指數(shù)大于表示空氣重度污染,某人隨機(jī)選擇日至日中的某一天到達(dá)該市,并停留天.

(1)求此人到達(dá)當(dāng)日空氣質(zhì)量?jī)?yōu)良的概率;
(2)求此人停留期間至多有1天空氣重度污染的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

某校舉行中學(xué)生“日常生活小常識(shí)”知識(shí)比賽,比賽分為初賽和復(fù)賽兩部分,初賽采用選手從備選題中選一題答一題的方式進(jìn)行;每位選手最多有5次答題機(jī)會(huì),選手累計(jì)答對(duì)3題或答錯(cuò)3題即終止比賽,答對(duì)3題者直接進(jìn)入復(fù)賽,答錯(cuò)3題者則被淘汰.已知選手甲答對(duì)每個(gè)題的概率均為,且相互間沒(méi)有影響.
(1)求選手甲進(jìn)入復(fù)賽的概率;
(2)設(shè)選手甲在初賽中答題的個(gè)數(shù)為,試求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

某單位從一所學(xué)校招收某類特殊人才.對(duì)位已經(jīng)選拔入圍的學(xué)生進(jìn)行運(yùn)動(dòng)協(xié)調(diào)能力和邏輯思維能力的測(cè)試,其測(cè)試結(jié)果如下表:

 

一般
良好
優(yōu)秀
一般



良好



優(yōu)秀



例如表中運(yùn)動(dòng)協(xié)調(diào)能力良好且邏輯思維能力一般的學(xué)生是人.由于部分?jǐn)?shù)據(jù)丟失,只知道從這位參加測(cè)試的學(xué)生中隨機(jī)抽取一位,抽到邏輯思維能力優(yōu)秀的學(xué)生的概率為
(1)求的值;
(2)從運(yùn)動(dòng)協(xié)調(diào)能力為優(yōu)秀的學(xué)生中任意抽取位,求其中至少有一位邏輯思維能力優(yōu)秀的學(xué)生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

袋中有4個(gè)紅球,3個(gè)黑球,從袋中隨機(jī)地抽取4個(gè)球,設(shè)取到1個(gè)紅球得2分,取到1個(gè)黑球得1分.
(1)求得分X的分布列;(2)求得分大于6的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案