(2009•閔行區(qū)二模)(理)已知地球半徑為6378公里,位于赤道上兩點(diǎn)A、B分別在東經(jīng)23°和143°上,則A、B兩點(diǎn)的球面距離為
13351
13351
公里(π取3.14,結(jié)果精確到1公里).
分析:由已知中球O的半徑,它的表面上有兩點(diǎn)A,B,且 ∠AOB=143°-23°=
3
,代入弧長公式,即可求出A,B兩點(diǎn)間的球面距離.
解答:解:∵球O的半徑為R=6378,
又∵∠AOB=143°-23°=
3
,
由弦長公式得:
l=α•R=
3
R
=
2×3.14
3
×6378
≈13351
故答案為:13351.
點(diǎn)評:本題考查的知識點(diǎn)是球面距離,其中根據(jù)已知條件,結(jié)合弧長公式,求出滿足條件的大圓距離(弧長)是解答本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2009•閔行區(qū)二模)(文)斜率為1的直線過拋物線y2=4x的焦點(diǎn),且與拋物線交于兩點(diǎn)A、B.
(1)求|AB|的值;
(2)將直線AB按向量
a
=(-2,0)
平移得直線m,N是m上的動(dòng)點(diǎn),求
NA
NB
的最小值.
(3)設(shè)C(2,0),D為拋物線y2=4x上一動(dòng)點(diǎn),證明:存在一條定直線l:x=a,使得l被以CD為直徑的圓截得的弦長為定值,并求出直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•閔行區(qū)二模)(文)計(jì)算
lim
n→∞
2n2+1
3n(n-1)
=
2
3
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•閔行區(qū)二模)(理)若函數(shù)f(x)=
3x+1  (x≥1)
x-4
x-2
 (x<1).
則f-1(2)=
0
0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•閔行區(qū)二模)(文)若f(x)=
x-4x-2
,則f-1(2)=
0
0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•閔行區(qū)二模)(文)若直線l經(jīng)過點(diǎn)P(1,2),且法向量為
n
=(3,-4)
,則直線l的方程是
3x-4y+5=0
3x-4y+5=0
(結(jié)果用直線的一般式表示).

查看答案和解析>>

同步練習(xí)冊答案