如圖,在直角坐標系中,點A(-1,0),B(1,0),P(x,y)()。設(shè)與x軸正方向的夾角分別為α、β、γ,若。

    (I)求點P的軌跡G的方程;

    (II)設(shè)過點C(0,-1)的直線與軌跡G交于不同兩點M、N。問在x軸上是否存在一點,使△MNE為正三角形。若存在求出值;若不存在說明理由。

(I)軌跡G方程為

    (II)不存在這樣的點使△MNE為正△


解析:

(I)由已知,當(dāng)時,

   

   

   

   

    當(dāng)時,,也滿足方程<1>

    ∴所求軌跡G方程為

    (II)假設(shè)存在點,使為正△

    設(shè)直線方程:代入

    得:

   

   

    ∴MN中點

   

   

   

    在正△EMN中,

   

   

    矛盾

    ∴不存在這樣的點使△MNE為正△

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在直角坐標系中,射線OA:x-y=0(x≥0),OB:
3
x+3y=0(x≥0),
過點P(1,0)作直線分別交射線OA、OB于A、B點.
①當(dāng)AB的中點為P時,求直線AB的方程;
②當(dāng)AB的中點在直線y=
1
2
x上時,求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在直角坐標系中,已知△ABC的三個頂點的坐標,求:
(1)直線AB的一般式方程;
(2)AC邊上的高所在直線的斜截式方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在直角坐標系中,直線y=6-x與y=
4x
(x>0)
的圖象相交于點A、B,設(shè)點A的坐標為(x1,y1),那么長為x1,寬為y1的矩形面積和周長分別為
4,12
4,12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在直角坐標系中,A,B,C三點在x軸上,原點O和點B分別是線段AB和AC的中點,已知AO=m(m為常數(shù)),平面上的點P滿足PA+PB=6m.
(1)試求點P的軌跡C1的方程;
(2)若點(x,y)在曲線C1上,求證:點(
x
3
y
2
2
)
一定在某圓C2上;
(3)過點C作直線l,與圓C2相交于M,N兩點,若點N恰好是線段CM的中點,試求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在直角坐標系中,中心在原點,焦點在x軸上的橢圓G的離心率為
15
4
,左頂點為A(-4,0).圓O′:(x-2)2+y2=
4
9

(Ⅰ)求橢圓G的方程;
(Ⅱ)過M(0,1)作圓O′的兩條切線交橢圓于E、F,判斷直線EF與圓的位置關(guān)系,并證明.

查看答案和解析>>

同步練習(xí)冊答案