設(shè)函數(shù)f(x)=
1
x
,g(x)=-x2+bx.若y=f(x)的圖象與y=g(x)的圖象有且僅有兩個(gè)不同的公共點(diǎn)A(x1,y1),B(x2,y2),則下列判斷正確的是( 。
A.x1+x2>0,y1+y2>0B.x1+x2>0,y1+y2<0
C.x1+x2<0,y1+y2>0D.x1+x2<0,y1+y2<0
設(shè)F(x)=x3-bx2+1,則方程F(x)=0與f(x)=g(x)同解,故其有且僅有兩個(gè)不同零點(diǎn)x1,x2
由F'(x)=0得x=0或x=
2
3
b
.這樣,必須且只須F(0)=0或F(
2
3
b)=0

因?yàn)镕(0)=1,故必有F(
2
3
b)=0
由此得b=
3
2
32
.不妨設(shè)x1<x2,則x2=
2
3
b=
32
.所以F(x)=(x-x1)(x-
32
)2
,
比較系數(shù)得-x1
34
=1
,故x1=-
1
2
32
.x1+x2=
1
2
32
>0

由此知y1+y2=
1
x1
+
1
x2
=
x1+x2
x1x2
<0
,
故選B.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若定義在R上的奇函數(shù)f(x)滿足f(x)=f(x+2),且f(1)=0,則f(x)在區(qū)間(0,5]上具有零點(diǎn)的最少個(gè)數(shù)是( 。
A.5B.4C.3D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù)f(x)=(
1
2
)|x-1|
+2cosπx(-2≤x≤4)的所有零點(diǎn)之和等于(  )
A.2B.4C.6D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

對(duì)a,b∈R,定義:min{a,b}=
aa<b
ba≥b
,設(shè)函數(shù)f(x)=min{(x-1)2,|x+1|},x∈D=[-3,3]
(1)求f(-2),f(3)的值;
(2)在平面直角坐標(biāo)系內(nèi)作出該函數(shù)的大致圖象;
(3)就k的值討論關(guān)于x的方程f(x)=k解的個(gè)數(shù)情況.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)函數(shù)f(x)=x2+bx+c,且f(1)=-
1
2

(1)求證:函數(shù)f(x)有兩個(gè)零點(diǎn).
(2)設(shè)x1、x2是函數(shù)f(x)的兩個(gè)零點(diǎn),求|x1-x2|的取值范圍.
(3)求證:函數(shù)f(x)在區(qū)間(0,2)內(nèi)至少有一個(gè)零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

方程lgx-sinx=0根的個(gè)數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知a,b,c∈N*,方程ax2+bx+c=0在區(qū)間(-1,0)上有兩個(gè)不同的實(shí)根,求a+b+c的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)f(x)是定義在R上的奇函數(shù),若f(x)在(0,+∞)上是減函數(shù),且2是函數(shù)f(x)的一個(gè)零點(diǎn),則滿足xf(x)>0的x的取值范圍是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)函數(shù)f(x)=ax2+bx+c(a>0)且f(1)=-
a
2

(1)求證:函數(shù)f(x)有兩個(gè)零點(diǎn);
(2)設(shè)x1,x2是函數(shù)的兩個(gè)零點(diǎn),求|x1-x2|的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案