精英家教網 > 高中數學 > 題目詳情

【題目】如圖,△ABC是邊長為4的等邊三角形,△ABD是等腰直角三角形,AD⊥BD,平面ABC⊥平面ABD,且EC⊥平面ABC,EC=2.
(1)證明:DE∥平面ABC;
(2)證明:AD⊥BE.

【答案】證明:(1)取AB的中點F,連接DF,CF,
∵△ABC是邊長為4的等邊三角形,△ABD是等腰直角三角形,AD⊥BD,平面ABC⊥平面ABD,
∴DF⊥CF,
∵DF=BC=2
又∵EC⊥平面ABC,既有:EC⊥FC,EC=2.
∴DFEC,故四邊形DEFC為平行四邊形,
∴DE∥FC
∴DE平面ABC,可得DE∥平面ABC.
(2)以FA,FC,FD為x,y,z軸的正方向建立直角坐標系,
則有:A(2,0,0),D(0,0,2),B(﹣2,0,0),E(0,2,2)
=(﹣2,0,2),=(﹣2,2,2)
由于=0,
故AD⊥BE.

【解析】(1)取AB的中點F,連接DF,CF,由已知可證DFEC,可得四邊形DEFC為平行四邊形,可得DE∥FC,由DE平面ABC,從而可證DE∥平面ABC.
(2)以FA,FC,FD為x,y,z軸的正方向建立直角坐標系,求出向量 , 的坐標,由=0,即可證明AD⊥BE.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數,kR.

(I)求函數f(x)的單調區(qū)間;

(II)k>0時,若函數f(x)在區(qū)間(1,2)內單調遞減,求k的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知△ABC面積S和三邊a,b,c滿足:S=a2﹣(b﹣c)2 , b+c=8,則△ABC面積S的最大值為

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設函數f(x)=|x﹣1|+|x﹣3|
(Ⅰ)求不等式f(x)>2的解集;
(Ⅱ)若不等式f(x)≤a(x+)的解集非空,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖所示,在四棱錐S ABCD中,平面SAD⊥平面ABCD.四邊形ABCD為正方形,

(1)求證:CD⊥平面SAD.

(2)若SA=SD,點M為BC的中點,在棱SC上是否存在點N,使得平面DMN⊥平面ABCD?若存在,請說明其位置,并加以證明;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=ex·(a++lnx),其中aR.

(I)若曲線y=f(x)在x=1處的切線與直線y=-垂直,求a的值;

(II)當a(0,ln2)時,證明:f(x)存在極小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某種樹苗栽種時高度為A(A為常數)米,栽種n年后的高度記為f(n).經研究發(fā)現f(n)近似地滿足 f(n),其中a,b為常數,n∈N,f(0)A.已知栽種3年后該樹木的高度為栽種時高度的3倍.

1)栽種多少年后,該樹木的高度是栽種時高度的8倍;

2)該樹木在栽種后哪一年的增長高度最大.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某市A,B兩所中學的學生組隊參加辯論賽,A中學推薦3名男生,2名女生,B中學推薦了3名男生,4名女生,兩校推薦的學生一起參加集訓,由于集訓后隊員的水平相當,從參加集訓的男生中隨機抽取3人,女生中隨機抽取3人組成代表隊

1求A中學至少有1名學生入選代表隊的概率.

2某場比賽前,從代表隊的6名隊員中隨機抽取4人參賽,設X表示參賽的男生人數,求X得分布列和數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖所示,在四棱錐中,底面ABCD是正方形,AC與BD交于點O,底面ABCD,F為BE的中點,

(1)求證:平面ACF

(2)求BE與平面ACE的所成角的正切值;

(3)在線段EO上是否存在點G,使CG平面BDE ?若存在,求出EG:EO的值,若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案