如圖,平面,是矩形,,點(diǎn)的中點(diǎn),點(diǎn)是邊上的動(dòng)點(diǎn).

(Ⅰ)求三棱錐的體積;
(Ⅱ)當(dāng)點(diǎn)的中點(diǎn)時(shí),試判斷與平面的位置關(guān)系,并說明理由;
(Ⅲ)證明:無論點(diǎn)在邊的何處,都有.
(Ⅰ);(Ⅱ)平面平行;(Ⅲ)證明見解析.

試題分析:﹙Ⅰ﹚將為高,為底面可根據(jù)條件直接求得體積;(Ⅱ)根據(jù)三角形的中位線的性質(zhì)及線面平行的判定性質(zhì)易判斷的中點(diǎn)時(shí),有平面平行;(Ⅲ)根據(jù)條件只須證明平面,進(jìn)而轉(zhuǎn)化為證明即可,
試題解析:(Ⅰ)解:∵⊥平面為矩形,

(Ⅱ)平面平行.
當(dāng)中點(diǎn)時(shí),的中點(diǎn),∴
平面,平面,∴平面
(Ⅲ)證明:∵,的中點(diǎn),∴,
平面,∴,
,∴平面,
平面,∴
,∴平面
因無論點(diǎn)在邊的何處,都有平面,∴
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知在四棱錐中, 底面四邊形是直角梯形, ,,.

(1)求證:;
(2)求直線與底面所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在四棱錐中,是正方形,平面,,分別是的中點(diǎn).

(1)在線段上確定一點(diǎn),使平面,并給出證明;
(2)證明平面平面,并求出到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在四棱錐P-ABCD中,底面為直角梯形,垂直于底面ABCD,PA=AD=AB=2BC=2,M,N分別為PC,PB的中點(diǎn).

(Ⅰ)求證:PB⊥DM;
(Ⅱ)求點(diǎn)B到平面PAC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在如圖所示的多面體中,,

(Ⅰ)求證:;
(Ⅱ)求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知、、為不在同一直線上的三點(diǎn),且,.

(1)求證:平面//平面;
(2)若平面,且,,,求證:平面;
(3)在(2)的條件下,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

平面平面的一個(gè)充分條件是
A.存在一條直線
B.存在一個(gè)平面,
C.存在一個(gè)平面,
D.存在一條直線,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)為兩條直線,為兩個(gè)平面,下列四個(gè)命題中正確的是
A.若所成的角相等,則
B.若,,則
C.若,則
D.若,則

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

下列命題中假命題是(     )
A.垂直于同一條直線的兩條直線相互垂直
B.若一條直線平行于兩個(gè)相交平面,則這條直線與這兩個(gè)平面的交線平行
C.若一個(gè)平面經(jīng)過另一個(gè)平面的垂線,那么這兩個(gè)平面相互垂直
D.若一個(gè)平面內(nèi)的兩條相交直線與另一個(gè)平面內(nèi)的相交直線分別平行,那么這兩個(gè)平面相互平行

查看答案和解析>>

同步練習(xí)冊(cè)答案