如圖1,在平面內(nèi),ABCD邊長(zhǎng)為2的正方形,ADD″A1和CDD″C1都是正方形.將兩個(gè)正方形分別沿AD,CD折起,使D″與D′重合于點(diǎn)D1.設(shè)直線(xiàn)l過(guò)點(diǎn)B且垂直于正方形ABCD所在的平面,點(diǎn)E是直線(xiàn)l上的一個(gè)動(dòng)點(diǎn),且與點(diǎn)D1位于平面ABCD同側(cè),設(shè)BE=t(t>0)(圖2).
(1)設(shè)二面角E-AC-D1的大小為θ,當(dāng)t=2時(shí),求θ的余弦值;
(2)當(dāng)t>2時(shí)在線(xiàn)段D1E上是否存在點(diǎn)P,使平面PA1C1∥平面EAC,若存在,求出P分所成的比λ;若不存在,請(qǐng)說(shuō)明理由.

【答案】分析:(1)先找到二面角E-AC-D1的平面角,由余弦定理,求出平面角的余弦值,即可.
(2)先假設(shè)存在點(diǎn)P,使平面PA1C1∥平面EAC,建立空間直角坐標(biāo)系,找到平面ACE的法向量,根據(jù)P分所成的比為λ,得=,計(jì)算出λ的值,若能算出,則存在,若計(jì)算不出,則不存在.
解答:解:(1)連接DB交AC于點(diǎn)O,連接DO,EO,在△ADC中,DO⊥AC,
同理可證,EO⊥AC
∴∠D1OE為所求二面角的平面角θ
在△ADC中,∵AD1=CD1=AC=2,∴OD1=
同理可得,OE=,又∵D1E=2
∴在△D1OE中,由余弦定理得,cosθ=
(2)設(shè)以D為原點(diǎn),DA,DC,DD1所在直線(xiàn)分別為x軸,y軸,z軸,建立空間直角坐標(biāo)系.BE=t
則,D(0,0,0),A(2,0,0),C(2,2,0),A1(2,0,2),D1(0,0,2),C1(0,2,2),E(2,2,t0
假設(shè)粗在滿(mǎn)足題意的點(diǎn)P(x,y,z)
∵P分所成的比為λ,∴=?(x,y,z)=λ(2-x,2-y,t-z)
解得,x=,y=,z=
P(,
=(,,
設(shè)平面ACE的法向量=(x,y,z
=(-2,2,0),=(0,-2,-t)
?-2x+2y=0,?-2y-ty=0

令x0=y0=t,則,z0=-2,∴=(t,t,-2)
平面PA1C1∥平面EAC,得PA1∥平面EAC
?--=0⇒λ=
∴在線(xiàn)段D1E上是存在點(diǎn)P,使平面PA1C1∥平面EAC,P分所成的比λ=(t>2)
點(diǎn)評(píng):本題考查了二面角的平面角的求法,以及用空間向量判斷立體幾何位置關(guān)系.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖1,在平面內(nèi),ABCD是∠BAD=60°,且AB=a的菱形,ADD′′A1和CD D′C1都是正方形.將兩個(gè)正方形分別沿AD,CD折起,使D′′與D′重合于點(diǎn)D1.設(shè)直線(xiàn)l過(guò)點(diǎn)B且垂直于菱形ABCD所在的平面,點(diǎn)E是直線(xiàn)l上的一個(gè)動(dòng)點(diǎn),且與點(diǎn)D1位于平面ABCD同側(cè)(圖2).
(Ⅰ) 設(shè)二面角E-AC-D1的大小為θ,若
π
4
≤θ≤
π
3
,求線(xiàn)段BE長(zhǎng)的取值范圍;
(Ⅱ)在線(xiàn)段D1E上存在點(diǎn)P,使平面PA1C1∥平面EAC,求
D1P
PE
與BE之間滿(mǎn)足的關(guān)系式,并證明:當(dāng)0<BE<a時(shí),恒有
D1P
PE
<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖1,在平面內(nèi),ABCD是∠BAD=60°且AB=a的菱形,ADD''A1和CDD'C1都是正方形.將兩個(gè)正方形分別沿AD,CD折起,使D''與D'重合于點(diǎn)D1.設(shè)直線(xiàn)l過(guò)點(diǎn)B且垂直于菱形ABCD所在的平面,點(diǎn)E是直線(xiàn)l上的一個(gè)動(dòng)點(diǎn),且與點(diǎn)D1位于平面ABCD同側(cè),設(shè)BE=t(t>0)(圖2).
(1)設(shè)二面角E-AC-D1的大小為q,若
π
4
≤θ≤
π
3
,求t的取值范圍;
(2)在線(xiàn)段D1E上是否存在點(diǎn)P,使平面PA1C1∥平面EAC,若存在,求出P分
D1E
所成的比λ;若不存在,請(qǐng)說(shuō)明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年浙江省杭州市高三第二次教學(xué)質(zhì)量考試數(shù)學(xué)理卷 題型:解答題

(本題滿(mǎn)分14分)

如圖1,在平面內(nèi),ABCD是的菱形,ADD``A1和CD D`C1都是正方形.將兩個(gè)正方形分別沿AD,CD折起,使D``與D`重合于點(diǎn)D1 .設(shè)直線(xiàn)l過(guò)點(diǎn)B且垂直于菱形ABCD所在的平面,點(diǎn)E是直線(xiàn)l上的一個(gè)動(dòng)點(diǎn),且與點(diǎn)D1位于平面ABCD同側(cè)(圖2).

  

(Ⅰ) 設(shè)二面角E – AC – D1的大小為q,若£ q £ ,求線(xiàn)段BE長(zhǎng)的取值范圍;

(Ⅱ)在線(xiàn)段上存在點(diǎn),使平面平面,求與BE之間滿(mǎn)足的關(guān)系式,并證明:當(dāng)0 < BE < a時(shí),恒有< 1.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

己知在銳角ΔABC中,角所對(duì)的邊分別為,且

(I )求角大;

(II)當(dāng)時(shí),求的取值范圍.

20.如圖1,在平面內(nèi),的矩形,是正三角形,將沿折起,使如圖2,的中點(diǎn),設(shè)直線(xiàn)過(guò)點(diǎn)且垂直于矩形所在平面,點(diǎn)是直線(xiàn)上的一個(gè)動(dòng)點(diǎn),且與點(diǎn)位于平面的同側(cè)。

(1)求證:平面

(2)設(shè)二面角的平面角為,若,求線(xiàn)段長(zhǎng)的取值范圍。

 


21.已知A,B是橢圓的左,右頂點(diǎn),,過(guò)橢圓C的右焦點(diǎn)F的直線(xiàn)交橢圓于點(diǎn)M,N,交直線(xiàn)于點(diǎn)P,且直線(xiàn)PA,PF,PB的斜率成等差數(shù)列,R和Q是橢圓上的兩動(dòng)點(diǎn),R和Q的橫坐標(biāo)之和為2,RQ的中垂線(xiàn)交X軸于T點(diǎn)

(1)求橢圓C的方程;

(2)求三角形MNT的面積的最大值

22. 已知函數(shù) ,

(Ⅰ)若上存在最大值與最小值,且其最大值與最小值的和為,試求的值。

(Ⅱ)若為奇函數(shù):

(1)是否存在實(shí)數(shù),使得為增函數(shù),為減函數(shù),若存在,求出的值,若不存在,請(qǐng)說(shuō)明理由;

(2)如果當(dāng)時(shí),都有恒成立,試求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年浙江省杭州市高考數(shù)學(xué)二模試卷(理科)(解析版) 題型:解答題

如圖1,在平面內(nèi),ABCD是∠BAD=60°,且AB=a的菱形,ADD′′A1和CD D′C1都是正方形.將兩個(gè)正方形分別沿AD,CD折起,使D′′與D′重合于點(diǎn)D1.設(shè)直線(xiàn)l過(guò)點(diǎn)B且垂直于菱形ABCD所在的平面,點(diǎn)E是直線(xiàn)l上的一個(gè)動(dòng)點(diǎn),且與點(diǎn)D1位于平面ABCD同側(cè)(圖2).
(Ⅰ) 設(shè)二面角E-AC-D1的大小為θ,若≤θ≤,求線(xiàn)段BE長(zhǎng)的取值范圍;
(Ⅱ)在線(xiàn)段D1E上存在點(diǎn)P,使平面PA1C1∥平面EAC,求與BE之間滿(mǎn)足的關(guān)系式,并證明:當(dāng)0<BE<a時(shí),恒有<1.

查看答案和解析>>

同步練習(xí)冊(cè)答案